Ultrastructure of the putative stem cell niche in rat mammary epithelium

Tissue Cell. 2003 Apr;35(2):83-93. doi: 10.1016/s0040-8166(02)00107-6.

Abstract

There is now strong evidence that the stem cells of many tissues reside in specialized structures termed niches. The stem cell niche functions to house and regulate symmetric and asymmetric mitosis of stem cells in mammalian skin, mouse and human bone marrow, mouse brain, gut, and hair follicle, and Drosophila ovary and testis. This regulation is effected through the action of various signaling pathways such as Notch, Hedgehog, Wnt and others. The hormones of the estrous cycle, pregnancy and lactation that initiate growth in mouse mammary epithelium appear to act at a paracrine level to regulate mitosis through Notch receptors. Previous work has established that the putative stem cells of the mammary epithelium in several animal species reside near the basement membrane and never make contact with the ductal lumen. We show that these putative stem cells are found in anatomically specialized places created by the cytoplasmic extensions and modifications of neighboring differentiated cells. Such specializations may help to regulate stem cell activity by modulating molecular traffic to putative stem cells and contact with signaling molecules in the basement membrane. The histological characteristics of these putative niches vary as to the kinds of relationships the cells can have with the basement membrane and neighboring cells and as to how many stem or progenitor cells they may contain. This suggests a plasticity that may be relevant to the response of niches to tissue demands, such as wound healing, the periodic growth and regression of mammary epithelium, the process of mammary tumorigenesis therapeutic strategies for breast cancer.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Basement Membrane / ultrastructure
  • Cell Communication
  • Cell Differentiation
  • Epithelium / ultrastructure*
  • Female
  • Mammary Glands, Animal / cytology*
  • Microscopy, Electron
  • Rats
  • Rats, Sprague-Dawley
  • Stem Cells / ultrastructure*