Defects of blastogenesis

Am J Med Genet. 2002 Dec 30;115(4):269-86. doi: 10.1002/ajmg.10983.

Abstract

Ever more frequent and closer involvement by clinical geneticists and counselors in the prenatal assessment of development mandates a better understanding of all stages of human ontogeny, but especially those of earliest development during which most of the lethal and all of the gross, multiple and complex defects of morphogenesis arise. Because of the phenomenon of universality, i.e., identical molecular inductive mechanisms involved in the process of embryonic pattern formation in all vertebrates, experimental animals indeed are a most valuable approach to an understanding of the causal and formal aspects of development and are beginning to forge essential, strong bonds between molecular biologists and clinicians in a mutually supportive discipline of developmental biology. However, to grieving parents of a stillborn fetus with, say, Pentalogy of Cantrell, sirenomelia or otocephaly, mouse data offer little comfort or reassurance about recurrence; thus, it is imperative to make ever more effective a science of human teratology (sensu lato) with participating reproductive geneticists, obstetricians, neonatologists, ultrasonographers, pediatric/fetal pathologists, cytogeneticists and pediatric geneticists to generate the diagnostic, pathogenetic and causal data necessary to counsel and to comfort the parents. Few molecular data exist on causes of blastogenetic defects in humans; however, the phenomenon of parsimony, whereby the same "morphogenetic" molecule, say, sonic hedgehog (SHH), is "deployed" simultaneously or sequentially during the morphogenesis (and even the histogenesis) of several/many embryonic primordia, makes it likely that a genetic/epigenetic disturbance of such an inductive system will have multiple effects on blastogenetic, organogenetic and perhaps also histogenetic events in the embryo. If causally defined, such a pattern of anomalies constitutes pleiotropy, and the embryo/fetus can be said to have a syndrome. If cause is unknown, the presumption of pleiotropy is less certain, and the fetus/infant may be said to have an "association" with low empiric recurrence risk.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Blastocyst / pathology*
  • Congenital Abnormalities / classification*
  • Congenital Abnormalities / embryology*
  • Congenital Abnormalities / epidemiology
  • Congenital Abnormalities / genetics
  • Embryo, Mammalian / abnormalities
  • Embryonic and Fetal Development / genetics*
  • Female
  • Humans