Skip to main content
Log in

Genetics of Hypertension

Therapeutic Implications

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Essential hypertension affects ≈20% of the adult population, and has a multi-factorial origin arising from an interaction between susceptibility genes and environmental factors. The understanding of the molecular basis of essential hypertension may provide us with new and more specific pharmacological agents, and perhaps the ability to individualise treatment and maximise the reduction in risk of morbidity and mortality from cardiovascular disease.

Hypertension due to single gene abnormalities is very rare; however, it follows a Mendelian model of inheritance and therefore can be identified successfully using family linkage studies. Since clear Mendelian models of inheritance cannot readily be assigned in essential hypertension as there may be variable penetrance of susceptibility genes, other studies with designs based on affected sibling pairs, family-based association studies and case-control studies have been performed.

The renin-angiotensin system (RAS) plays an integral part in the control of blood pressure, and genetic polymorphisms within this system and their effect on the response to antihypertensive therapy are now being studied. Polymorphisms of the angiotensin converting enzyme (ACE) gene, although associated with left ventricular hypertrophy, do not appear to have a clear association with hypertension. Studies on the association of genotype with response to antihypertensive therapy are less consistent for genetic polymorphisms of the RAS. Although some of the results are positive, patient numbers have been small in the studies completed to date.

Genetic polymorphisms of the adrenergic receptors have been associated with blood pressure variation in African-Americans, White Americans and African-Caribbeans. Aβ2-adrenoceptor polymorphism exhibits agonist-mediated receptor downregulation which may lead to enhanced peripheral vasoconstriction. Therapeutic studies have not yet been completed on patients with this genotype.

A further polymorphism of the α-adducin gene has been associated with essential hypertension. This may influence blood pressure response to sodium loading/depletion and response to long term treatment with a thiazide diuretic, but further studies are needed to clarify this.

Antisense oligonucleotides targeted against genes of the RAS, e.g. angiotensinogen and the angiotensin type 1 receptor, are being modified to improve targeting and thereby reduce toxicity. However, gene therapy is unlikely to replace pharmacological therapy in the foreseeable future. The immediate goal should be to enhance our understanding of the genetic nature of essential hypertension based on the interaction of genetic makeup with the environment, with a view to individualising antihypertensive therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lander ES, Schork NJ. Genetic dissection of complex traits [published erratum appears in Science 1994 Oct 21; 266 (5184): 353] [review]. Science 1994 Sep 30; 265(5181): 2037–48

    Article  PubMed  CAS  Google Scholar 

  2. Dykes CW. Genes, disease and medicine. Br J Clin Pharmacol 1996 Dec; 42(6): 683–95

    Article  PubMed  CAS  Google Scholar 

  3. Lifton RP. Molecular genetics of human blood pressure variation [review]. Science 1996 May 3; 272(5262): 676–80

    Article  PubMed  CAS  Google Scholar 

  4. Ward R. Familial aggregation and genetic epidemiology of blood pressure. In: Laragh JH, Brenner BM, editors. Hypertension: pathophysiology, diagnosis and management. Vol. 1. New York: Raven Press, 1990: 81–100

    Google Scholar 

  5. Sutherland DJ, Ruse JL, Laidlaw JC. Hypertension, increased aldosterone secretion and low plasma renin activity relieved by dexamethasone. Can Med Assoc J 1966 Nov 26; 95(22): 1109–19

    PubMed  CAS  Google Scholar 

  6. Lifton RP, Dluhy RG, Powers M, et al. A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature 1992 Jan 16; 355(6357): 262–5

    Article  PubMed  CAS  Google Scholar 

  7. White PC. Inherited forms of mineralocorticoid hypertension. Hypertension 1996 Dec; 28(6): 927–36

    Article  PubMed  CAS  Google Scholar 

  8. Mune T, Rogerson FM, Nikkila H, et al. Human hypertension caused by mutations in the kidney isozyme of 11 beta-hydroxysteroid dehydrogenase. Nat Genet 1995 Aug; 10(4): 394–9

    Article  PubMed  CAS  Google Scholar 

  9. Stewart PM, Krozowski ZS, Gupta A, et al. Hypertension in the syndrome of apparent mineralocorticoid excess due to mutation of the 11β-hydroxysteroid dehydrogenase type 2 gene. Lancet 1996 Jan 13; 347(8994): 88–91

    Article  PubMed  CAS  Google Scholar 

  10. Liddle GW, Bledsoe T, Coppage WS. A familial renal disorder stimulating primary aldosteronism but with negligible aldosterone secretion. Trans Assoc Am Physicians 1963; 76: 199–213

    CAS  Google Scholar 

  11. Shimkets R, Warnock DG, Bositis CM, et al. Liddles syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell 1994 Nov 4; 79(3): 407–14

    Article  PubMed  CAS  Google Scholar 

  12. Gordon RD, Geddes RA, Pawsey CG, et al. Hypertension and severe hyperkalaemia associated with suppression of renin and aldosterone and completely reversed by dietary sodium restriction. Australas Ann Med 1970 Nov; 19(4): 287–94

    PubMed  CAS  Google Scholar 

  13. Mansfield TA, Simon DB, Farfel Z, et al. Multilocus linkage of familial hyperkalaemia and hypertension, pseudohypoaldo-steronism type II, to chromosomes lq31-42 and 17p11-q21. Nat Genet 1997 Jun; 16(2): 202–5

    Article  PubMed  CAS  Google Scholar 

  14. Julier C, Delepine M, Keaveney B, et al. Genetic susceptibility for human familial essential hypertension in a region of homology with blood pressure linkage on rat chromosome 10. Hum Mol Genet 1997 Nov; 6(12): 2077–85

    Article  PubMed  CAS  Google Scholar 

  15. Kaplan NM, Ram CVS. Hypertension in ethnic sub-groups. In: Swales JD, editor. Textbook of hypertension. Oxford: Black-well, 1994: 811–28

    Google Scholar 

  16. O'Connor DT, Kailasam MT, Parmer RT. Complex trait genetics: new methods yield a result for essential hypertension [editorial]. J Clin Invest 1996 May 1; 97(9): 1997–8

    Article  PubMed  Google Scholar 

  17. Brown MJ. The causes of essential hypertension. Br J Clin Pharmacol 1996 Jul; 42(1): 21–7

    Article  PubMed  CAS  Google Scholar 

  18. Risch N, Zhang H. Extreme discordant sib pairs for mapping quantitative trait loci in humans. Science 1995 Jun 16; 268(5217): 1584–9

    Article  PubMed  CAS  Google Scholar 

  19. Bennett ST, Lucassen AM, Gough FC et al. Susceptibility to human type I diabetes at IDDM 2 is determined by tandem repeat variation at the insulin gene mini satellite locus. Nature Genetics 1995; 9: 284–92

    Article  PubMed  CAS  Google Scholar 

  20. Reed PW, Davies JL, Copeman JB, et al. Chromosome-specific microsatellite sets for fluorescence-based, semi-automated genome mapping. Nat Genet 1994 Jul; 7(3): 390–5

    Article  PubMed  CAS  Google Scholar 

  21. Todd JA. Genetic analysis of type 1 diabetes using whole genome approaches. Proc Natl Acad Sci U S A 1995 Sep 12; 92(19): 8560–5

    Article  PubMed  CAS  Google Scholar 

  22. Jeunemaitre X, Soubrier F, Kotelevtsev YV, et al. Molecular basis of hypertension: role of angiotensinogen. Cell 1992 Oct 2; 71(1): 169–80

    Article  PubMed  CAS  Google Scholar 

  23. Caulfield M, Lavender P, Farrall M, et al. Linkage of the angiotensinogen gene to essential hypertension. N Engl J Med 1994 Jun 9; 330(23): 1629–33

    Article  PubMed  CAS  Google Scholar 

  24. Caulfield M, Lavender P, Newell-Price J, et al. Linkage of the angiotensinogen gene locus to human essential hypertension in African Caribbeans. J Clin Invest 1995 Aug; 96(2): 687–92

    Article  PubMed  CAS  Google Scholar 

  25. Schunkert H, Hense H-W, Gimenez-Roqueplo A, et al. The angiotensinogen T235 variant and the use of antihypertensive drugs in a population-based cohort. Hypertension 1997 Feb; 29(2): 628–33

    Article  PubMed  CAS  Google Scholar 

  26. Hingorani AD, Sharma P, Jia H, et al. Blood pressure and the M235T polymorphism of the angiotensinogen gene. Hypertension 1996 Nov; 28(5): 907–11

    Article  PubMed  CAS  Google Scholar 

  27. Jeunemaitre X, Inoue I, Williams C, et al. Haplotypes of angiotensinogen in essential hypertension. Am J Hum Genet 1997 Jun; 60(6): 1448–60

    Article  PubMed  CAS  Google Scholar 

  28. Inoue I, Nakajima T, Williams CS, et al. A nucleotide substitution in the promoter of human angiotensinogen is associated with essential hypertension and affects basal transcription in vitro. J Clin Invest 1997 Apr 1; 99(7): 1786–97

    Article  PubMed  CAS  Google Scholar 

  29. Ishigami T, Umemura S, Tamura K, et al. Essential hypertension and 5′upstream core promoter region of human angiotensinogen gene. Hypertension 1997 Dec; 30(6): 1325–30

    Article  PubMed  CAS  Google Scholar 

  30. Dudley C, Keavney B, Casadei B, et al. Prediction of patient responses to antihypertensive drugs using genetic polymorphisms: investigation of renin-angiotensin system genes. J Hypertens 1996 Feb; 14(2): 259–62

    Article  PubMed  CAS  Google Scholar 

  31. Hingorani AD, Jia H, Stevens P, et al. Renin-angiotensin system gene polymorphisms influence blood pressure and the response to angiotensin converting enzyme inhibition. J Hypertens 1995 Dec; 13 (12 Pt 2): 1602–9

    PubMed  CAS  Google Scholar 

  32. Dieguez-Lucena JL, Aranda-Lara P, Ruiz-Galdon M, et al. Angiotensin I-converting enzyme genotypes and angiotensin II receptors — response to therapy. Hypertension 1996 Jul; 28(1): 98–103

    Article  PubMed  CAS  Google Scholar 

  33. Sasaki M, Takashi O, Luchi A, et al. Relationship between the angiotensin converting enzyme gene polymorphism and the effects of enalapril on left ventricular hypertrophy and impaired diastolic filling in essential hypertension: M-mode and pulsed doppler echocardiographic studies. J Hypertens 1996 Dec; 14(12): 1403–8

    Article  PubMed  CAS  Google Scholar 

  34. Zee RYL, Lou YK, Morris BJ. Association of a polymorphism of the angiotensin I-converting enzyme gene with essential hypertension. Biochem Biophys Res Commun 1991 Apr 15; 184(1): 9–15

    Article  Google Scholar 

  35. Jeunemaitre X, Lifton RP, Hunt SC, et al. Absence of linkage between the angiotensin converting enzyme locus and human essential hypertension. Nat Genet 1992 Apr; 1(1): 72–5

    Article  PubMed  CAS  Google Scholar 

  36. Schmidt S, van Hooit MS, Grobbee DE, et al. Polymorphism of the angiotensin I converting enzyme gene is apparently not related to high blood pressure: Dutch Hypertension and Offspring study. J Hypertens 1993 Apr; 11(4): 345–8

    Article  PubMed  CAS  Google Scholar 

  37. Harrap SB, Davidson HR, Connor JM, et al. The angiotensin I converting enzyme gene and predisposition to high blood pressure. Hypertension 1993 Apr; 21(4): 455–60

    Article  PubMed  CAS  Google Scholar 

  38. Bonnardeaux A, Davies E, Jeunemaitre X, et al. Angiotensin II type 1 receptor gene polymorphisms in human essential hypertension. Hypertension 1994 Jul; 24(1): 63–9

    Article  PubMed  CAS  Google Scholar 

  39. Benetos A, Gautier S, Ricard S, et al. Influence of angiotensin-converting enzyme and angiotensin II type 1 receptor gene polymorphisms on aortic stiffness in normotensive and hypertensive patients. Circulation 1996 Aug 15; 94(4): 698–703

    Article  PubMed  CAS  Google Scholar 

  40. Benetos A, Cambien F, Gautier S, et al. Influence of angiotensin II type 1 receptor gene polymorphism on the effects of perindopril and nitrendipine on arterial stiffness in hypertensive individuals. Hypertension 1996 Dec; 28(6): 1081–4

    Article  PubMed  CAS  Google Scholar 

  41. Sevetkey LP, Timmons PZ, Emovon O, et al. Association of hypertension with beta2- and alpha2c10-adrenergic receptor genotype. Hypertension 1996 Jun; 27(6): 1210–5

    Article  Google Scholar 

  42. Kotanko P, Binder A, Tasker J, et al. Essential hypertension in African Caribbeans associates with a variant of the beta2-adrenoceptor. Hypertension 1997 Oct; 30(4): 773–6

    Article  PubMed  CAS  Google Scholar 

  43. Lang CC, Stein M, Brown M, et al. Attenuation of isoproterenol-mediated vasodilatation in blacks. N Engl J Med 1995 Jul 20; 333(3): 155–60

    Article  PubMed  CAS  Google Scholar 

  44. Bianchi G, Tripodi G, Casari G, et al. Two point mutations within the adducin genes are involved in blood pressure variation. Proc Natl Acad Sci U S A 1994 Apr 26; 91(9): 3999–4003

    Article  PubMed  CAS  Google Scholar 

  45. Tripodi G, Valtorta F, Torielli L, et al. Hypertension-associated point mutations in the adducin alpha and beta subunits affect actin cytoskeleton and ion transport. J Clin Invest 1996 Jun 15; 97(12): 2815–22

    Article  PubMed  CAS  Google Scholar 

  46. Cusi D, Barlassina C, Azzani T, et al. Polymorphisms of alpha adducin and salt sensitivity in patients with essential hypertension. Lancet 1997 May 10; 349(9062): 1353–7

    Article  PubMed  CAS  Google Scholar 

  47. Rosskopf D, Dusing R, Siffert W. Membrane sodium-proton exchange in primary hypertension. Hypertension 1993; 21: 607–17

    Article  PubMed  CAS  Google Scholar 

  48. Siffert W, Rosskopf D, Siffert G, et al. Association of a human G-protein β3 subunit variant with hypertension. Nat Genet 1998; 18: 45–8

    Article  PubMed  CAS  Google Scholar 

  49. Phillips MI. Antisense inhibition and adeno-associated viral vector delivery for reducing hypertension. Hypertension 1997 Jan; 29 (1 Pt 2): 177–87

    Article  PubMed  CAS  Google Scholar 

  50. Tomita N, Morishita R, Higaki J, et al. Transient decrease in high blood pressure by in vivo transfer of antisense oligo-deoxynucleotides against rat angiotensinogen. Hypertension 1995 Jul; 26(1): 131–6

    Article  PubMed  CAS  Google Scholar 

  51. Phillips MI, Mohuczy-Dominiak D, Coffey M, et al. Prolonged reduction of high blood pressure with an in vivo, non-pathogenic, adeno-associated viral vector delivery of AT1-R mRNA antisense. Hypertension 1997 Jan; 29 (1 Pt 2): 374–80

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Caulfield.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Byrne, S., Caulfield, M. Genetics of Hypertension. Drugs 56, 203–214 (1998). https://doi.org/10.2165/00003495-199856020-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199856020-00004

Keywords

Navigation