Skip to main content
Log in

Clinical Pharmacokinetics and Selective Pharmacodynamics of New Angiotensin Converting Enzyme Inhibitors

An Update

  • Review Articles
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

The angiotensin converting enzyme (ACE) inhibitors are widely used in the management of essential hypertension, stable chronic heart failure, myocardial infarction (MI) and diabetic nephropathy. There is an increasing number of new agents to add to the nine ACE inhibitors (benazepril, cilazapril, delapril, fosinopril, lisinopril, pentopril, perindopril, quinapril and ramipril) reviewed in this journal in 1990. The pharmacokinetic properties of five newer ACE inhibitors (trandolapril, moexipril, spirapril, temocapril and imidapril) are reviewed in this update.

All of these new agents are characterised by having a carboxyl functional groups and requiring hepatic activation to form pharmacologically active metabolites. They achieve peak plasma concentrations at similar times (tmax) to those of established agents. Three of these agents (trandolapril, moexipril and imidapril) require dosage reductions in patients with renal impairment. Dosage reductions of moexipril and temocapril are recommended for elderly patients, and dosages of moexipril should be lower in patients who are hepatically impaired. Moexipril should be taken 1 hour before meals, whereas other ACE inhibitors can be taken without regard to meals.

The pharmacokinetics of warfarin are not altered by concomitant administration with trandolapril or moexipril. Although imidapril and spirapril have no effect on digoxin pharmacokinetics, the area under the concentration-time curve of imidapril and the peak plasma concentration of the active metabolite imidaprilat are decreased when imidapril is given together with digoxin.

Although six ACE inhibitors (captopril, enalapril, fosinopril, lisinopril, quinapril and ramipril) have been approved for use in heart failure by the US Food and Drug Administration, an overview of 32 clinical trials of ACE inhibitors in heart failure showed that no significant heterogeneity in mortality was found among enalapril, ramipril, quinapril, captopril, lisinopril, benazepril, perindopril and cilazapril. Initiation of therapy with captopril, ramipril, and trandolapril at least 3 days after an acute MI resulted in all-cause mortality risk reductions of 18 to 27%. Captopril has been shown to have similar morbidity and mortality benefits to those of diuretics and β-blockers in hypertensive patients. Captopril has been shown to delay the progression of diabetic nephropathy, and enalapril and lisinopril prevent the development of nephropathy in normoalbuminuric patients with diabetes.

ACE inhibitors are generally characterised by flat dose-response curves. Lisinopril is the only ACE inhibitor that exhibits a linear dose-response curve. Despite the fact that most ACE inhibitors are recommended for once-daily administration, only fosinopril, ramipril, and trandolapril have trough-to-peak effect ratios in excess of 50%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III
Table IV

Similar content being viewed by others

References

  1. Kelly JG, O’Malley K. Clinical pharmacokinetics of the newer ACE inhibitors: a review. Clin Pharmacokinet 1990; 19: 177–96

    Article  PubMed  CAS  Google Scholar 

  2. Kubo SH, Cody RJ. Clinical pharmacokinetics of the angiotensin converting enzyme inhibitors: a review. Clin Pharmacokinet 1985; 10: 377–91

    Article  PubMed  CAS  Google Scholar 

  3. Kaiser G, Ackermann R, Brechbuhler S, et al. Pharmacokinetics of the angiotensin-converting enzyme inhibitor, benazepril HCl (CGS 14824A), in healthy volunteers after single and repeated administration. Biopharm Drug Dispos 1989; 10: 365–76

    Article  PubMed  CAS  Google Scholar 

  4. Dieterle W, Ackermann R, Kaiser G. Pharmacokinetics of benazeprilat after intravenous administration in healthy volunteers [abstract]. Eur J Clin Pharmacol 1989; 9 Suppl.: A303

    Google Scholar 

  5. Williams PEO, Brown AN, Rajaguru S, et al. The pharmacokinetics and bioavailability of cilazapril in normal man. Br J Clin Pharmacol 1989; 27: 181S–8S

    Article  PubMed  CAS  Google Scholar 

  6. Shionoiri H, Yasuda G, Ikeda A, et al. Pharmacokinetics and depressor effect of delapril in patients with essential hypertension. Clin Pharmacol Ther 1987; 41: 74–9

    Article  PubMed  CAS  Google Scholar 

  7. Onoyama K, Nanishi F, Okuda S, et al. Pharmacokinetics of a new angiotensin converting enzyme inhibitor (delapril) in patients with deteriorated kidney function and in normal control subjects. Clin Pharmacol Ther 1988; 43: 242–9

    Article  PubMed  CAS  Google Scholar 

  8. Singhvi SM, Duchin KL, Morrison RA, et al. Disposition of fosinopril sodium in healthy subjects. Br J Clin Pharmacol 1988; 25: 9–15

    Article  PubMed  CAS  Google Scholar 

  9. Ulm EH, Hichens M, Gomez HJ, et al. Enalapril maleate and a lysine analogue (MK521): disposition in man. Br J Clin Pharmacol 1982; 14: 357–62

    Article  PubMed  CAS  Google Scholar 

  10. Rakhit A, Hurley ME, Tipnis V, et al. Pharmacokinetics and pharmacodynamics of pentopril, a new angiotensin-converting-enzyme inhibitor in humans. J Clin Pharmacol 1986; 26: 156–64

    PubMed  CAS  Google Scholar 

  11. Rakhit A, Kochak GM, Tipnis V, et al. Pharmacokinetics of pentopril in the elderly. Br J Clin Pharmacol 1987; 24: 351–7

    Article  PubMed  CAS  Google Scholar 

  12. Kochak GM, Rakhit A, Thompson TN, et al. Pentopril-cimetidine interaction caused by a reduction in hepatic blood flow. J Clin Pharmacol 1989; 28: 222–7

    Google Scholar 

  13. Rakhit A, Radensky P, Szerlip HM, et al. Effect of renal impairment on disposition of pentopril and its active metabolite. Clin Pharmacol Ther 1988; 44: 39–48

    Article  PubMed  CAS  Google Scholar 

  14. Lees KR, Green ST, Reid JL. Influence of age on pharmacokinetics and pharmacodynamics of perindopril. Clin Pharmacol Ther 1988; 44: 418–25

    Article  PubMed  CAS  Google Scholar 

  15. Ferry JJ, Cetnarowski AB, Sedman AJ, et al. Multiple dose cimetidine administration does not influence the single-dose pharmacokinetics of quinapril and its active metabolite (CI-928). J Clin Pharmacol 1988; 28: 48–51

    PubMed  CAS  Google Scholar 

  16. Neub M, Vollmer K, Anderson J, et al. Pharmacokinetics of the ACE-inhibitor quinapril in young and elderly volunteers [abstract]. Eur J Clin Pharmacol 1989; 36 Suppl.: A222

    Google Scholar 

  17. Eckert HG, Badian MJ, Gantz D, et al. Pharmacokinetics and biotransformation of 2-(N-((S)-1-ethoxycarboxyl-3-phenylpropyl)-L-alanyl)-(1S, 3S, 5S)-2-azabicyclo (3.3.0) octane-3-carboxylic acid (Hoe 498) in rat, dog, and man. Arzneimittelforschung 1984; 34: 1435–47

    PubMed  CAS  Google Scholar 

  18. Witte PU, Irmisch R, Hajdu P, et al. Pharmacokinetics and pharmacodynamics of a novel orally active angiotensin converting enzyme inhibitor (Hoe 498) in healthy subjects. Eur J Clin Pharmacol 1984; 27: 577–81

    Article  PubMed  CAS  Google Scholar 

  19. Thuillez C, Richer C, Giudicelli JF. Pharmacokinetics, converting enzyme inhibition and peripheral arterial haemodynamics of ramipril in healthy volunteers. Am J Cardiol 1987; 59: 38D–44D

    Article  PubMed  CAS  Google Scholar 

  20. Meyer BH, Muller O, Badian M, et al. Pharmacokinetics of ramipril in the elderly. Am J Cardiol 1987; 59: 33D–7D

    Article  PubMed  CAS  Google Scholar 

  21. The CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med 1987; 316: 1429–35

    Article  Google Scholar 

  22. Cohn JN, Johnson G, Ziesche S, et al. A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N Engl J Med 1991; 325: 303–10

    Article  PubMed  CAS  Google Scholar 

  23. The SOLVD Investigators. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 1991; 325: 293–302

    Article  Google Scholar 

  24. Garg G, Yusuf S, Collaborative Group on ACE Inhibitor Trials. Overview of randomized trials of angiotensin-converting enzyme inhibitors on mortality and morbidity in patients with heart failure. JAMA 1995; 273: 1450–6

    Article  PubMed  CAS  Google Scholar 

  25. Hobbs RE. Results of the ATLAS Study. High or low doses of ACE inhibitors for heart failure? Cleve Clin J Med 1998; 65: 539–42

    PubMed  CAS  Google Scholar 

  26. Gruppo Italiano per lo Studio della Sopravvivenza nell’infarcto Miocardico. GISSI-3: effects of lisinopril and transdermal glyceryl trinitrate singly and together on 6-week mortality and ventricular function after acute myocardial infarction. Lancet 1994; 343: 1115–22

    Google Scholar 

  27. The Fourth International Study of Infarct Survival (ISIS-4) Collaborative Group. ISIS-4: a randomised factorial trial assessing early oral captopril, oral mononitrate, and intravenous magnesium sulphate in 58 050 patients with suspected acute myocardial infarction. Lancet 1995; 345: 669–85

    Article  Google Scholar 

  28. Chinese Cardiac Study Collaborative Group. Oral captopril versus placebo among 13 634 patients with suspected acute myocardial infarction: interim report from the Chinese Cardiac Study (CCS-1). Lancet 1995; 345: 686–7

    Article  Google Scholar 

  29. Swedberg K, Held P, Kjekshus J, et al. Effects of the early administration of enalapril on mortality in patients with acute myocardial infarction. Results of the Cooperative New Scandinavian Enalapril Survival Study II (CONSENSUS II). N Engl J Med 1992; 327: 678–84

    Article  PubMed  CAS  Google Scholar 

  30. ACE Inhibitor Myocardial Infarction Collaborative Group. Indications for ACE inhibitors in the early treatment of acute myocardial infarction: systematic overview of individual data from 100,000 patients in randomized trials. Circulation 1998; 97: 2202–12

    Article  Google Scholar 

  31. Pfeffer MA, Braunwald E, Moye LA, et al., for the SAVE Investigators. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the Survival and Ventricular Enlargement trial. N Engl J Med 1992; 327: 669–77

    Article  PubMed  CAS  Google Scholar 

  32. The Acute Infarction Ramipril Efficacy (AIRE) Study Investigators. Effect of ramipril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure. Lancet 1993; 342: 821–8

    Google Scholar 

  33. Kober L, Torp-Pedersen C, Carlsen JE, et al., Trandolapril Cardiac Evaluation (TRACE) Study Group. A clinical trial of the angiotensin-converting-enzyme inhibitor trandolapril in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 1995; 333: 1670–6

    Article  PubMed  CAS  Google Scholar 

  34. Lewis EJ, Hunsicker LG, Bain RP, et al. The effect of angiotensin-converting enzyme inhibition on diabetic nephropathy. N Engl J Med 1993; 329: 1456–62

    Article  PubMed  CAS  Google Scholar 

  35. Marre M, Chatellier G, Leblanc H, et al. Prevention of diabetic nephropathy with enalapril in normotensive diabetics with microalbuminuria. BMJ 1988; 297: 1092–5

    Article  PubMed  CAS  Google Scholar 

  36. The EUCLID Study Group. Randomised placebo-controlled trial of lisinopril in normotensive patients with insulin-dependent diabetes and normoalbuminuria or microalbuminuria. Lancet 1997; 349: 1787–92

    Article  Google Scholar 

  37. Ravid M, Savin H, Jurtin I, et al. Long-term stabilizing effect of angiotensin-converting enzyme inhibition on plasma creatinine and on proteinuria in normotensive type II diabetic patients. Ann Intern Med 1993; 118: 577–81

    PubMed  CAS  Google Scholar 

  38. Rose M, McMahon FG. Some problems with antihypertensive drug studies in the context of the new guidelines. Am J Hypertens 1990; 3: 151–5

    PubMed  CAS  Google Scholar 

  39. Goa KL, Wagstaff AJ. Losartan potassium: a review of its pharmacology, clinical efficacy, and tolerability in the management of hypertension. Drugs 1996; 51: 820–45

    Article  PubMed  CAS  Google Scholar 

  40. Ellis ML, Patterson JH. A new class of antihypertensive therapy: angiotensin II antagonists. Pharmacotherapy 1996; 16: 849–60

    PubMed  CAS  Google Scholar 

  41. Reid IA. Vasoactive peptides. In: Katzung BG, editor. Basic and clinical pharmacology. 7th ed. Stamford (CT): Appleton and Lange, 1998: 287–91

    Google Scholar 

  42. White CM. Pharmacologic, pharmacokinetic, and therapeutic differences among ACE inhibitors. Pharmacotherapy 1998; 18: 588–99

    PubMed  CAS  Google Scholar 

  43. Edling O, Bao G, Feelisch M, et al. Moexipril, a new angiotensin-converting enzyme (ACE) inhibitor: pharmacological characterization and comparison with enalapril. J Pharmacol Exp Ther 1995; 275: 854–63

    PubMed  CAS  Google Scholar 

  44. Chevillard C, Brown NL, Mathieu MN, et al. Differential effects of oral trandolapril and enalapril on rat tissue angiotensin converting enzyme. Eur J Pharmacol 1988; 147: 23–8

    Article  PubMed  CAS  Google Scholar 

  45. Pinto YM, van Veldhuisen DJ, Tjon-Ka-Jie RT, et al. Dose-finding study of imidapril, a novel angiotensin converting enzyme inhibitor, in patients with stable chronic heart failure. Eur J Clin Pharmacol 1996; 50: 265–8

    Article  PubMed  CAS  Google Scholar 

  46. Delacretaz E, Nussberger J, Puchler K, et al. Value of different clinical and biochemical correlates to assess angiotensin converting enzyme inhibition. J Cardiovasc Pharmacol 1994; 24: 479–85

    Article  PubMed  CAS  Google Scholar 

  47. Unger TH, Gohlke P, Paul M, et al. Tissue renin-angiotensin-systems: fact or fiction? J Cardiovasc Pharmacol 1991; 18 Suppl. 2: 20–5

    Google Scholar 

  48. Hoogkamer JF, Kleinbloesem CH, Nokhodian A, et al. Pharmacokinetics of imidapril and its active metabolite imidaprilat following single dose and during steady state in patients with chronic renal failure. Eur J Clin Pharmacol 1998; 54: 59–61

    Article  PubMed  CAS  Google Scholar 

  49. Delacretaz E, Nussberger J, Puchler K, et al. Value of different clinical and biochemical correlates to assess angiotensin converting enzyme inhibition. J Cardiovasc Pharmacol 1994; 24(3): 479–85

    Article  PubMed  CAS  Google Scholar 

  50. Bardelay C, Mach E, Worcel M, et al. Angiotensin-converting enzyme in rat brain and extraneural tissues visualized by quantitative autoradiography using 3H-trandolaprilate. J Cardiovasc Pharmacol 1989; 14: 511–8

    Article  PubMed  CAS  Google Scholar 

  51. Sybertz EJ, Watkins RW, Ahn HS, et al. Pharmacologic, metabolic, and toxicologic profile of spirapril (SCH 33844), a new angiotensin converting inhibitor. J Cardiovasc Pharmacol 1987; 10 Suppl. 7: S105–8

    Article  PubMed  CAS  Google Scholar 

  52. Friehe H, Ney P. Pharmacological and toxicological studies of the new angiotensin converting enzyme inhibitor moexipril hydrochloride. Arzneimittelforschung 1997; 47(2): 132–44

    PubMed  CAS  Google Scholar 

  53. Wiseman LR, McTavish D. Trandolapril: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in essential hypertension. Drugs 1994; 48: 71–90

    Article  PubMed  CAS  Google Scholar 

  54. Arner P, Wade A, Engfeldt P, et al. Pharmacokinetics and pharmacodynamics of trandolapril after repeated administration of 2mg to young and elderly patients with mild-to-moderate hypertension. J Cardiovasc Pharmacol 1994; 23 Suppl. 4: S44–9

    PubMed  Google Scholar 

  55. Brown NL, Batel M-Y, Benzoni F, et al. Angiotensin-converting enzyme inhibition, anti-hypertensive activity and hemodynamic profile of trandolapril (RU 44570). Eur J Pharmacol 1988; 148: 79–91

    Article  PubMed  CAS  Google Scholar 

  56. Lenfant B, Mouren M, Bryce T, et al. Trandolapril: pharmacokinetics of single oral doses in healthy male volunteers. J Cardiovasc Pharmacol 1994; 23 Suppl. 4: S38–43

    PubMed  CAS  Google Scholar 

  57. Danielson B, Querin S, LaRochelle P, et al. Pharmacokinetics and pharmacodynamics of trandolapril after repeated administration of 2mg to patients with chronic renal failure and healthy control subjects. J Cardiovasc Pharmacol 1994; 23 Suppl. 4: S50–9

    PubMed  Google Scholar 

  58. Stimpel M, Bonn R, Koch B, et al. Pharmacology and clinical use of the new ACE-inhibitor moexipril. Cardiovascular Drug Reviews 1995; 13: 211–29

    Article  CAS  Google Scholar 

  59. Stimpel M, Cawello W. Pharmacokinetics and ACE-inhibition of the new ACE-inhibitor moexipril: is coadministration with food of clinical relevance? [abstract]. Hypertension 1995; 25: 1384

    Google Scholar 

  60. Grass P, Gerbeau C, Kutz K. Spirapril: pharmacokinetic properties and drug interactions. Blood Press 1994; 3 Suppl. 2: 7–13

    Article  Google Scholar 

  61. Stein G, Sierakowski B, Grass P, et al. Pharmacokinetics of spirapril and spiraprilat in patients with chronic renal failure. Blood Press 1994; 3 Suppl. 2: 47–53

    Article  Google Scholar 

  62. Hayduk K, Kraul H. Efficacy and safety of spirapril in mild-to-moderate hypertension. J Cardiovasc Pharmacol 1999; 34 Suppl. 1: S19–23

    Article  PubMed  CAS  Google Scholar 

  63. Puchler K, Sierakowski B, Roots I. Single dose and steady state pharmacokinetics of temocapril and temocaprilat in young and elderly hypertensive patients. Br J Clin Pharmacol 1998; 46: 363–7

    Article  PubMed  CAS  Google Scholar 

  64. Harder S, Thurmann PA, Ungethum W. Single dose and steady state pharmacokinetics and pharmacodynamics of the ACE-inhibitor imidapril in hypertensive patients. Br J Clin Pharmacol 1998; 45: 377–80

    Article  PubMed  CAS  Google Scholar 

  65. Meyer BH, Muller FO, Badenhorst PN, et al. Multiple doses of trandolapril do not affect warfarin pharmacodynamics. S Afr Med J 1995; 85: 768–70

    PubMed  CAS  Google Scholar 

  66. Pritchard G, Lyons D, Webster J, et al. Indomethacin does not attenuate the hypotensive effect of trandolapril. J Hum Hypertens 1996; 10: 763–7

    PubMed  CAS  Google Scholar 

  67. Hutt V, Michaelis K, Verbesselt R, et al. Lack of a pharmacokinetic interaction between moexipril and hydrochlorothiazide. Eur J Clin Pharmacol 1996; 51: 339–44

    Article  PubMed  CAS  Google Scholar 

  68. Van Hecken A, Verbesselt R, Depre M, et al. Moexipril does not alter the pharmacokinetics or pharmacodynamics of warfarin. Eur J Clin Pharmacol 1993; 45: 291–3

    Article  PubMed  Google Scholar 

  69. Drugdex ®. Spirapril Drugdex Drug Evaluation. Colorado: Micromedex, Sep 2001.

    Google Scholar 

  70. Johnson BF, Wilson J, Johnson J, et al. Digoxin pharmacokinetics and spirapril, a new ACE inhibitor. J Clin Pharmacol 1991; 31: 527–30

    PubMed  CAS  Google Scholar 

  71. Sierakowski B, Puchler K, Witte PU, et al. Single-dose pharmacokinetics of temocapril and temocapril diacid in subjects with varying degrees of renal impairment. Eur J Clin Pharmacol 1997; 53: 215–20

    Article  PubMed  CAS  Google Scholar 

  72. Puchler K, Eckl KM, Fritsche L, et al. Pharmacokinetics of temocapril and temocaprilat after 14 once-daily oral doses of temocapril in hypertensive patients with varying degrees of renal impairment. Br J Clin Pharmacol 1997; 44: 531–6

    Article  PubMed  CAS  Google Scholar 

  73. Suzuki H, Kawaratani T, Shioya H, et al. Study on pharmacokinetics of a new biliary excreted oral angiotensin converting enzyme inhibitor, temocapril (CS-622) in humans. Biopharm Drug Dispos 1993; 14: 41–50

    Article  PubMed  CAS  Google Scholar 

  74. Shionoiri H, Naruse M, Minamisawa K, et al. Fosinopril: clinical pharmacokinetics and clinical potential. Clin Pharmacokinet 1997; 32: 460–80

    Article  PubMed  CAS  Google Scholar 

  75. Hoogkamer JF, Kleinbloesem CH, Nokhodian A, et al. Pharmacokinetics of imidapril and its active metabolite imidaprilat following single dose and during steady state in patients with impaired liver function. Eur J Clin Pharmacol 1997; 51: 489–91

    Article  PubMed  CAS  Google Scholar 

  76. Harder S, Thurmann PA. Pharmacokinetic and pharmacodynamic interaction trial after repeated oral doses of imidapril and digoxin in healthy volunteers. Br J Clin Pharmacol 1997; 43: 475–80

    Article  PubMed  CAS  Google Scholar 

  77. The Sixth Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Arch Intern Med 1997; 157: 2413–46

    Article  Google Scholar 

  78. Hansson L, Lindholm LH, Niskanen L. Effect of angiotensin-converting enzyme inhibition compared with conventional therapy on cardiovascular morbidity and mortality in hypertension: the Captopril Prevention Project (CAPPP) randomised trial. Lancet 1999; 353: 611–6

    Article  PubMed  CAS  Google Scholar 

  79. Pitt B, Segal R, Martinez FA, et al., for ELITE Study Investigators. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly study, ELITE). Lancet 1997; 349: 747–52

    Article  PubMed  CAS  Google Scholar 

  80. White CM. Angiotensin-converting-enzyme inhibition in heart failure or after myocardial infarction. Am J Health Syst Pharm 2000; 57 Suppl. 11: S18–25

    PubMed  CAS  Google Scholar 

  81. The Heart Outcomes Prevention Evaluation Study Investigators. Vitamin E supplementation and cardiovascular events in high-risk patients. N Engl J Med 2000; 342: 154–60

    Article  Google Scholar 

  82. Manley HJ. Role of angiotensin-converting-enzyme inhibition in patients with renal disease. Am J Health-Syst Pharm 2000; 57 Suppl. 1: S12–8

    PubMed  CAS  Google Scholar 

  83. Johnston GD. Dose-response relationships with antihypertensive drugs. Clin Pharmacol Ther 1992; 55: 53–93

    CAS  Google Scholar 

  84. Corea L, Cardoni O, Fogari R, et al. Valsartan, a new angiotensin II antagonist for the treatment of essential hypertension: a comparative study of the efficacy and safety against amlodipine. Clin Pharmacol Ther 1996; 60: 341–6

    Article  PubMed  CAS  Google Scholar 

  85. Salvetti A, Arzilli F. Chronic dose-response curve of enalapril in essential hypertensives. An Italian multicenter study. Am J Hypertens 1989; 2: 352–4

    PubMed  CAS  Google Scholar 

  86. Gomez HJ, Cirillo VJ, Sromovsky JA, et al. Lisinopril dose-response relationship in essential hypertension. Br J Clin Pharmacol 1989; 28: 415–20

    Article  PubMed  CAS  Google Scholar 

  87. Anderson RJ, Duchin KL, Gore RD, et al. Once-daily fosinopril in the treatment of hypertension. Hypertension 1991; 17: 636–42

    Article  PubMed  CAS  Google Scholar 

  88. Pool JL. Antihypertensive effect of fosinopril, a new angiotensin converting enzyme inhibitor: findings of the fosinopril study group II. Clin Ther 1990; 12: 520–33

    PubMed  CAS  Google Scholar 

  89. Chrysant SG, McDonald RH, Wright JT, et al. Perindopril as monotherapy in hypertension: a multicenter comparison of two dosing regimens. Clin Pharmacol Ther 1993; 53: 479–84

    Article  PubMed  CAS  Google Scholar 

  90. Drayer JM, Stimpel M, Fox A, et al. The antihypertensive properties of the angiotensin converting enzyme inhibitor moexipril given alone or in combination with a low dose of a diuretic. Am J Ther 1995; 2: 525–31

    Article  PubMed  Google Scholar 

  91. Vandenburg MJ, Mackay EM, Dews I, et al. Dose finding studies with imidapril-a new ACE inhibitor. Br J Clin Pharmacol 1994; 37: 265–72

    Article  PubMed  CAS  Google Scholar 

  92. Sedman AJ, Posvar E. Clinical pharmacology of quinapril in healthy volunteers and in patients with hypertension and congestive heart failure. Angiology 1989; 40: 360–9

    PubMed  CAS  Google Scholar 

  93. Weinberger MH, Black HR, Lasseter KC, et al. Diurnal blood pressure in patients with mild-to-moderate hypertension treated with once-daily benazepril. Clin Pharmacol Ther 1990; 47: 608–17

    Article  PubMed  CAS  Google Scholar 

  94. Guyenne TT, Bellet M, Sassano P, et al. Crossover design for the dose determination of an angiotensin converting enzyme inhibitor in hypertension. J Hypertens 1989; 7: 1005–12

    Article  Google Scholar 

  95. Bellet M, Whalen JJ, Bodin F, et al. Use of crossover trials to obtain antihypertensive dose-response curves and to study combination therapy during the development of benazepril. J Hypertens 1990; 8 Suppl. 4: S43–8

    CAS  Google Scholar 

  96. Meredith PA, Elliott HL. FDA guidelines on trough: peak ratios in the evaluation of antihypertensive agents. J Cardiovasc Pharmacol 1994; 23 Suppl. 5: S26–30

    Article  PubMed  CAS  Google Scholar 

  97. Zannad F, Matzinger A, Larche J. Trough/peak ratios of once-daily angiotensin converting enzyme inhibitors and calcium antagonists. Am J Hypertens 1996; 9: 633–43

    Article  PubMed  CAS  Google Scholar 

  98. Staessen JA, Thijs L, Bijttebier G, et al. Determining the trough-to-peak ratio in parallel-group trials. Hypertension 1997; 29: 659–67

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors had no source of funding, nor any conflict of interest relevant to the contents of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Michael White.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, J.C., White, C.M. Clinical Pharmacokinetics and Selective Pharmacodynamics of New Angiotensin Converting Enzyme Inhibitors. Clin Pharmacokinet 41, 207–224 (2002). https://doi.org/10.2165/00003088-200241030-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200241030-00005

Keywords

Navigation