1932

Abstract

3′-untranslated regions (3′-UTRs) are the noncoding parts of mRNAs. Compared to yeast, in humans, median 3′-UTR length has expanded approximately tenfold alongside an increased generation of alternative 3′-UTR isoforms. In contrast, the number of coding genes, as well as coding region length, has remained similar. This suggests an important role for 3′-UTRs in the biology of higher organisms. 3′-UTRs are best known to regulate diverse fates of mRNAs, including degradation, translation, and localization, but they can also function like long noncoding or small RNAs, as has been shown for whole 3′-UTRs as well as for cleaved fragments. Furthermore, 3′-UTRs determine the fate of proteins through the regulation of protein–protein interactions. They facilitate cotranslational protein complex formation, which establishes a role for 3′-UTRs as evolved eukaryotic operons. Whereas bacterial operons promote the interaction of two subunits, 3′-UTRs enable the formation of protein complexes with diverse compositions. All of these 3′-UTR functions are accomplished by effector proteins that are recruited by RNA-binding proteins that bind to 3′-UTR -elements. In summary, 3′-UTRs seem to be major players in gene regulation that enable local functions, compartmentalization, and cooperativity, which makes them important tools for the regulation of phenotypic diversity of higher organisms.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120116-024704
2017-11-27
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/genet/51/1/annurev-genet-120116-024704.html?itemId=/content/journals/10.1146/annurev-genet-120116-024704&mimeType=html&fmt=ahah

Literature Cited

  1. Achsel T, Bagni C. 1.  2016. Cooperativity in RNA–protein interactions: the complex is more than the sum of its partners. Curr. Opin. Neurobiol. 39:146–51 [Google Scholar]
  2. Agarwal V, Bell GW, Nam J-W, Bartel DP. 2.  2015. Predicting effective microRNA target sites in mammalian mRNAs. eLife 4:e05005 [Google Scholar]
  3. An JJ, Gharami K, Liao GY, Woo NH, Lau AG. 3.  et al. 2008. Distinct role of long 3′ UTR BDNF mRNA in spine morphology and synaptic plasticity in hippocampal neurons. Cell 134:175–87 [Google Scholar]
  4. Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP. 4.  2008. The impact of microRNAs on protein output. Nature 455:64–71 [Google Scholar]
  5. Baltz AG, Munschauer M, Schwanhausser B, Vasile A, Murakawa Y. 5.  et al. 2012. The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol. Cell 46:674–90 [Google Scholar]
  6. Barreau C, Paillard L, Osborne HB. 6.  2005. AU-rich elements and associated factors: Are there unifying principles?. Nucleic Acids Res 33:7138–50 [Google Scholar]
  7. Bartel DP. 7.  2009. MicroRNAs: target recognition and regulatory functions. Cell 136:215–33 [Google Scholar]
  8. Baumann S, Pohlmann T, Jungbluth M, Brachmann A, Feldbrügge M. 8.  2012. Kinesin-3 and dynein mediate microtubule-dependent co-transport of mRNPs and endosomes. J. Cell Sci. 125:2740–52 [Google Scholar]
  9. Berkovits BD, Mayr C. 9.  2015. Alternative 3′ UTRs act as scaffolds to regulate membrane protein localization. Nature 522:363–67 [Google Scholar]
  10. Boehm V, Haberman N, Ottens F, Ule J, Gehring NH. 10.  2014. 3′ UTR length and messenger ribonu-cleoprotein composition determine endocleavage efficiencies at termination codons. Cell Rep 9:555–68 [Google Scholar]
  11. Brannan KW, Jin W, Huelga SC, Banks CA, Gilmore JM. 11.  et al. 2016. SONAR discovers RNA-binding proteins from analysis of large-scale protein–protein interactomes. Mol. Cell 64:282–93 [Google Scholar]
  12. Bregman A, Avraham-Kelbert M, Barkai O, Duek L, Guterman A, Choder M. 12.  2011. Promoter elements regulate cytoplasmic mRNA decay. Cell 147:1473–83 [Google Scholar]
  13. Brennan CM, Gallouzi IE, Steitz JA. 13.  2000. Protein ligands to HuR modulate its interaction with target mRNAs in vivo. J. Cell Biol. 151:1–14 [Google Scholar]
  14. Campbell ZT, Bhimsaria D, Valley CT, Rodriguez-Martinez JA, Menichelli E. 14.  et al. 2012. Cooperativity in RNA–protein interactions: global analysis of RNA binding specificity. Cell Rep 1:570–81 [Google Scholar]
  15. Castello A, Fischer B, Eichelbaum K, Horos R, Beckmann BM. 15.  et al. 2012. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149:1393–406 [Google Scholar]
  16. Chang L, Shav-Tal Y, Trcek T, Singer RH, Goldman RD. 16.  2006. Assembling an intermediate filament network by dynamic cotranslation. J. Cell Biol. 172:747–58 [Google Scholar]
  17. Chao Y, Vogel J. 17.  2016. A 3′ UTR-derived small RNA provides the regulatory noncoding arm of the inner membrane stress response. Mol. Cell 61:352–63 [Google Scholar]
  18. Chapman EG, Costantino DA, Rabe JL, Moon SL, Wilusz J. 18.  et al. 2014. The structural basis of pathogenic subgenomic flavivirus RNA (sfRNA) production. Science 344:307–10 [Google Scholar]
  19. Chartron JW, Hunt KC, Frydman J. 19.  2016. Cotranslational signal-independent SRP preloading during membrane targeting. Nature 536:224–28 [Google Scholar]
  20. Chen C-Y, Chen S-T, Juan H-F, Huang H-C. 20.  2012. Lengthening of 3′UTR increases with morphological complexity in animal evolution. Bioinformatics 28:3178–81 [Google Scholar]
  21. Chen C-YA, Shyu A-B. 21.  1995. AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem. Sci. 20:465–70 [Google Scholar]
  22. Chen Y, Boland A, Kuzuoğlu-Öztürk D, Bawankar P, Loh B. 22.  et al. 2014. A DDX6-CNOT1 complex and W-binding pockets in CNOT9 reveal direct links between miRNA target recognition and silencing. Mol. Cell 54:737–50 [Google Scholar]
  23. Chu C, Zhang QC, da Rocha ST, Flynn RA, Bharadwaj M. 23.  et al. 2015. Systematic discovery of Xist RNA binding proteins. Cell 161:404–16 [Google Scholar]
  24. Crick FH. 24.  1958. On protein synthesis. Symp. Soc. Exp. Biol. 12:138–63 [Google Scholar]
  25. Cui XA, Palazzo AF. 25.  2014. Localization of mRNAs to the endoplasmic reticulum. Wiley Interdiscip. Rev. RNA 5:481–92 [Google Scholar]
  26. Dar D, Prasse D, Schmitz RA, Sorek R. 26.  2016. Widespread formation of alternative 3′ UTR isoforms via transcription termination in archaea. Nat. Microbiol. 1:16143 [Google Scholar]
  27. Dar D, Shamir M, Mellin JR, Koutero M, Stern-Ginossar N. 27.  et al. 2016. Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria. Science 352:aad9822 [Google Scholar]
  28. Derti A, Garrett-Engele P, Macisaac KD, Stevens RC, Sriram S. 28.  et al. 2012. A quantitative atlas of polyadenylation in five mammals. Genome Res 22:1173–83 [Google Scholar]
  29. Dienstbier M, Boehl F, Li X, Bullock SL. 29.  2009. Egalitarian is a selective RNA-binding protein linking mRNA localization signals to the dynein motor. Genes Dev 23:1546–58 [Google Scholar]
  30. Doller A, Schulz S, Pfeilschifter J, Eberhardt W. 30.  2013. RNA-dependent association with myosin IIA promotes F-actin-guided trafficking of the ELAV-like protein HuR to polysomes. Nucleic Acids Res 41:9152–67 [Google Scholar]
  31. Duncan CD, Mata J. 31.  2011. Widespread cotranslational formation of protein complexes. PLOS Genet 7:e1002398 [Google Scholar]
  32. Flavell SW, Kim T-K, Gray JM, Harmin DA, Hemberg M. 32.  et al. 2008. Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection. Neuron 60:1022–38 [Google Scholar]
  33. Floor SN, Doudna JA. 33.  2016. Tunable protein synthesis by transcript isoforms in human cells. eLife 5:e10921 [Google Scholar]
  34. Friedman RC, Farh KK, Burge CB, Bartel DP. 34.  2009. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105 [Google Scholar]
  35. Fujiwara Y, Kasashima K, Saito K, Fukuda M, Fukao A. 35.  et al. 2011. Microtubule association of a neuronal RNA-binding protein HuD through its binding to the light chain of MAP1B. Biochimie 93:817–22 [Google Scholar]
  36. Fulton AB, L'Ecuyer T. 36.  1993. Cotranslational assembly of some cytoskeletal proteins: implications and prospects. J. Cell Sci. 105:867–71 [Google Scholar]
  37. Gáspár I, Sysoev V, Komissarov A, Ephrussi A. 37.  2017. An RNA-binding atypical tropomyosin recruits kinesin-1 dynamically to oskar mRNPs. EMBO J 36:319–33 [Google Scholar]
  38. Gerber AP, Herschlag D, Brown PO. 38.  2004. Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding proteins in yeast. PLOS Biol 2:E79 [Google Scholar]
  39. Gerstberger S, Hafner M, Tuschl T. 39.  2014. A census of human RNA-binding proteins. Nat. Rev. Genet. 15:829–45 [Google Scholar]
  40. Gibson TJ. 40.  2009. Cell regulation: determined to signal discrete cooperation. Trends Biochem. Sci. 34:471–82 [Google Scholar]
  41. Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S. 41.  et al. 2006. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312:75–79 [Google Scholar]
  42. Grimson A, Farh KK-H, Johnston WK, Garrett-Engele P, Lim LP. Bartel DP. 42.  2007. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27:91–105 [Google Scholar]
  43. Hachet O, Ephrussi A. 43.  2004. Splicing of oskar RNA in the nucleus is coupled to its cytoplasmic localization. Nature 428:959–63 [Google Scholar]
  44. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J. 44.  et al. 2010. PAR-CliP—a method to identify transcriptome-wide the binding sites of RNA binding proteins. J. Vis. Exp. 41:e2034 [Google Scholar]
  45. Halbach A, Zhang H, Wengi A, Jablonska Z, Gruber IM. 45.  et al. 2009. Cotranslational assembly of the yeast SET1C histone methyltransferase complex. EMBO J 28:2959–70 [Google Scholar]
  46. Han TW, Kato M, Xie S, Wu LC, Mirzaei H. 46.  et al. 2012. Cell-free formation of RNA granules: Bound RNAs identify features and components of cellular assemblies. Cell 149:768–79 [Google Scholar]
  47. Heasman J, Wessely O, Langland R, Craig EJ, Kessler DS. 47.  2001. Vegetal localization of maternal mRNAs is disrupted by VegT depletion. Dev. Biol. 240:377–86 [Google Scholar]
  48. Hennig J, Gebauer F, Sattler M. 48.  2014. Breaking the protein–RNA recognition code. Cell Cycle 13:3619–20 [Google Scholar]
  49. Hennig J, Militti C, Popowicz GM, Wang I, Sonntag M. 49.  et al. 2014. Structural basis for the assembly of the Sxl–Unr translation regulatory complex. Nature 515:287–90 [Google Scholar]
  50. Hoffman Y, Bublik DR, Ugalde AP, Elkon R, Biniashvili T. 50.  et al. 2016. 3′UTR shortening potentiates microRNA-based repression of pro-differentiation genes in proliferating human cells. PLOS Genet 12:e1005879 [Google Scholar]
  51. Hogan DJ, Riordan DP, Gerber AP, Herschlag D, Brown PO. 51.  2008. Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLOS Biol 6:e255 [Google Scholar]
  52. Hüttelmaier S, Illenberger S, Grosheva I, Rüdiger M, Singer RH, Jockusch BM. 52.  2001. Raver1, a dual compartment protein, is a ligand for PTB/hnRNPI and microfilament attachment proteins. J. Cell Biol. 155:775–86 [Google Scholar]
  53. Hüttelmaier S, Zenklusen D, Lederer M, Dictenberg J, Lorenz M. 53.  et al. 2005. Spatial regulation of β-actin translation by Src-dependent phosphorylation of ZBP1. Nature 438:512–15 [Google Scholar]
  54. Huttlin EL, Ting L, Bruckner RJ, Gebreab F, Gygi MP. 54.  et al. 2015. The BioPlex network: a systematic exploration of the human interactome. Cell 162:425–40 [Google Scholar]
  55. Jaiswal S, Jamieson CH, Pang WW, Park CY, Chao MP. 55.  et al. 2009. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138:271–85 [Google Scholar]
  56. Jambor H, Brunel C, Ephrussi A. 56.  2011. Dimerization of oskar 3′ UTRs promotes hitchhiking for RNA localization in the Drosophila oocyte. RNA 17:2049–57 [Google Scholar]
  57. Jambor H, Mueller S, Bullock SL, Ephrussi A. 57.  2014. A stem–loop structure directs oskar mRNA to microtubule minus ends. RNA 20:429–39 [Google Scholar]
  58. Jan CH, Friedman RC, Ruby JG, Bartel DP. 58.  2011. Formation, regulation and evolution of Caenorhabditis elegans 3′UTRs. Nature 469:97–101 [Google Scholar]
  59. Jansen RP. 59.  1999. RNA-cytoskeletal associations. FASEB J 13:455–66 [Google Scholar]
  60. Jansen RP, Niessing D, Baumann S, Feldbrügge M. 60.  2014. mRNA transport meets membrane traffic. Trends Genet 30:408–17 [Google Scholar]
  61. Jenny A, Hachet O, Závorszky P, Cyrklaff A, Weston MDJ. 61.  et al. 2006. A translation-independent role of oskar RNA in early Drosophila oogenesis. Development 133:2827–33 [Google Scholar]
  62. Jens M, Rajewsky N. 62.  2015. Competition between target sites of regulators shapes post-transcriptional gene regulation. Nat. Rev. Genet. 16:113–26 [Google Scholar]
  63. Ji Z, Tian B. 63.  2009. Reprogramming of 3′ untranslated regions of mRNAs by alternative polyadenylation in generation of pluripotent stem cells from different cell types. PLOS ONE 4:e8419 [Google Scholar]
  64. Karginov FV, Cheloufi S, Chong MM, Stark A, Smith AD, Hannon GJ. 64.  2010. Diverse endonu-cleolytic cleavage sites in the mammalian transcriptome depend upon microRNAs, Drosha, and additional nucleases. Mol. Cell 38:781–88 [Google Scholar]
  65. Kato M, Han TW, Xie S, Shi K, Du X. 65.  et al. 2012. Cell-free formation of RNA granules: Low complexity sequence domains form dynamic fibers within hydrogels. Cell 149:753–67 [Google Scholar]
  66. Keene JD, Tenenbaum SA. 66.  2002. Eukaryotic mRNPs may represent posttranscriptional operons. Mol. Cell 9:1161–67 [Google Scholar]
  67. Kilchert C, Spang A. 67.  2011. Cotranslational transport of ABP140 mRNA to the distal pole of S. cerevisiae. EMBO J. 30:3567–80 [Google Scholar]
  68. Kim D, Kim J, Baek D. 68.  2014. Global and local competition between exogenously introduced microRNAs and endogenously expressed microRNAs. Mol. Cells 37:412–17 [Google Scholar]
  69. Kocabas A, Duarte T, Kumar S, Hynes MA. 69.  2015. Widespread differential expression of coding region and 3′ UTR sequences in neurons and other tissues. Neuron 88:1149–56 [Google Scholar]
  70. König J, Baumann S, Koepke J, Pohlmann T, Zarnack K, Feldbrügge M. 70.  2009. The fungal RNA-binding protein Rrm4 mediates long-distance transport of ubi1 and rho3 mRNAs. EMBO J 28:1855–66 [Google Scholar]
  71. König J, Zarnack K, Luscombe NM, Ule J. 71.  2012. Protein–RNA interactions: new genomic technologies and perspectives. Nat. Rev. Genet. 13:77–83 [Google Scholar]
  72. Kristjánsdóttir K, Fogarty EA, Grimson A. 72.  2015. Systematic analysis of the Hmga2 3′ UTR identifies many independent regulatory sequences and a novel interaction between distal sites. RNA 21:1346–60 [Google Scholar]
  73. Lackford B, Yao C, Charles GM, Weng L, Zheng X. 73.  et al. 2014. Fip1 regulates mRNA alternative polyadenylation to promote stem cell self-renewal. EMBO J 33:878–89 [Google Scholar]
  74. Lambert N, Robertson A, Jangi M, McGeary S, Sharp PA, Burge CB. 74.  2014. RNA Bind-n-Seq: quantitative assessment of the sequence and structural binding specificity of RNA binding proteins. Mol. Cell 54:887–900 [Google Scholar]
  75. Lau AG, Irier HA, Gu J, Tian D, Ku L. 75.  et al. 2010. Distinct 3′UTRs differentially regulate activity-dependent translation of brain-derived neurotrophic factor (BDNF). PNAS 107:15945–50 [Google Scholar]
  76. Lebedeva S, Jens M, Theil K, Schwanhäusser B, Selbach M. 76.  et al. 2011. Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol. Cell 43:340–52 [Google Scholar]
  77. Lecuyer E, Yoshida H, Parthasarathy N, Alm C, Babak T. 77.  et al. 2007. Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell 131:174–87 [Google Scholar]
  78. Lee CD, Tu BP. 78.  2015. Glucose-regulated phosphorylation of the PUF protein Puf3 regulates the translational fate of its bound mRNAs and association with RNA granules. Cell Rep 11:1638–50 [Google Scholar]
  79. Lee SH, Mayr C. 79.  2017. Alternative 3′UTRs regulate protein complex formation and post-translational modifications Presented at RNA Localization and Local Translation EMBO|EMBL Symp., Jul. 24 Barga, Italy:
  80. Leeper TC, Qu X, Lu C, Moore C, Varani G. 80.  2010. Novel protein–protein contacts facilitate mRNA 3′-processing signal recognition by Rna15 and Hrp1. J. Mol. Biol. 401:334–49 [Google Scholar]
  81. Lianoglou S, Garg V, Yang JL, Leslie CS, Mayr C. 81.  2013. Ubiquitously transcribed genes use alternative polyadenylation to achieve tissue-specific expression. Genes Dev 27:2380–96 [Google Scholar]
  82. Martin KC, Ephrussi A. 82.  2009. mRNA localization: gene expression in the spatial dimension. Cell 136:719–30 [Google Scholar]
  83. Masamha CP, Xia Z, Yang J, Albrecht TR, Li M. 83.  et al. 2014. CFIm25 links alternative polyadenylation to glioblastoma tumour suppression. Nature 510:412–16 [Google Scholar]
  84. Matia-González AM, Laing EE, Gerber AP. 84.  2015. Conserved mRNA-binding proteomes in eukaryotic organisms. Nat. Struct. Mol. Biol. 22:1027–33 [Google Scholar]
  85. Mayr C. 85.  2016. 3′UTR-mediated protein–protein interactions regulate protein functions Presented at The Complex Life of mRNA EMBO|EMBL Symp., Oct. 7 Heidelberg, Ger.:
  86. Mayr C. 86.  2016. Evolution and biological roles of alternative 3′UTRs. Trends Cell Biol 26:227–37 [Google Scholar]
  87. Mayr C, Bartel DP. 87.  2009. Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138:673–84 [Google Scholar]
  88. Mayr C, Hemann MT, Bartel DP. 88.  2007. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315:1576–79 [Google Scholar]
  89. McHugh CA, Chen CK, Chow A, Surka CF, Tran C. 89.  et al. 2015. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521:232–36 [Google Scholar]
  90. Mercer TR, Wilhelm D, Dinger ME, Solda G, Korbie DJ. 90.  et al. 2011. Expression of distinct RNAs from 3′ untranslated regions. Nucleic Acids Res 39:2393–403 [Google Scholar]
  91. Miller S, Yasuda M, Coats JK, Jones Y, Martone ME, Mayford M. 91.  2002. Disruption of dendritic translation of CaMKIIα impairs stabilization of synaptic plasticity and memory consolidation. Neuron 36:507–19 [Google Scholar]
  92. Mino T, Murakawa Y, Fukao A, Vandenbon A, Wessels HH. 92.  et al. 2015. Regnase-1 and Roquin regulate a common element in inflammatory mRNAs by spatiotemporally distinct mechanisms. Cell 161:1058–73 [Google Scholar]
  93. Mitchell SF, Jain S, She M, Parker R. 93.  2013. Global analysis of yeast mRNPs. Nat. Struct. Mol. Biol. 20:127–33 [Google Scholar]
  94. Mukherjee C, Bakthavachalu B, Schoenberg DR. 94.  2014. The cytoplasmic capping complex assembles on adapter protein Nck1 bound to the proline-rich C-terminus of mammalian capping enzyme. PLOS Biol 12:e1001933 [Google Scholar]
  95. Mukherjee N, Jacobs NC, Hafner M, Kennington EA, Nusbaum JD. 95.  et al. 2014. Global target mRNA specification and regulation by the RNA-binding protein ZFP36. Genome Biol 15:R12 [Google Scholar]
  96. Muller M, Heym RG, Mayer A, Kramer K, Schmid M. 96.  et al. 2011. A cytoplasmic complex mediates specific mRNA recognition and localization in yeast. PLOS Biol 9:e1000611 [Google Scholar]
  97. 97. NCBI (Natl. Cent. Biotechnol. Inf.). 2016. Genome database Bethesda, MD: updated Jul. 20. https://www.ncbi.nlm.nih.gov/genome
  98. Niedner A, Edelmann FT, Niessing D. 98.  2014. Of social molecules: the interactive assembly of ASH1 mRNA-transport complexes in yeast. RNA Biol 11:998–1009 [Google Scholar]
  99. Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E. 99.  et al. 2015. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol. Cell 57:936–47 [Google Scholar]
  100. Oikonomou P, Goodarzi H, Tavazoie S. 100.  2014. Systematic identification of regulatory elements in conserved 3′ UTRs of human transcripts. Cell Rep 7:281–92 [Google Scholar]
  101. Oktaba K, Zhang W, Lotz TS, Jun DJ, Lemke SB. 101.  et al. 2015. ELAV links paused Pol II to alternative polyadenylation in the Drosophila nervous system. Mol. Cell 57:341–48 [Google Scholar]
  102. Otsuka Y, Kedersha NL, Schoenberg DR. 102.  2009. Identification of a cytoplasmic complex that adds a cap onto 5′-monophosphate RNA. Mol. Cell. Biol. 29:2155–67 [Google Scholar]
  103. Proudfoot NJ, Brownlee GG. 103.  1976. 3′ non-coding region sequences in eukaryotic messenger RNA. Nature 263:211–14 [Google Scholar]
  104. Ray D, Kazan H, Cook KB, Weirauch MT, Najafabadi HS. 104.  et al. 2013. A compendium of RNA-binding motifs for decoding gene regulation. Nature 499:172–77 [Google Scholar]
  105. Reid DW, Nicchitta CV. 105.  2015. Diversity and selectivity in mRNA translation on the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol. 16:221–31 [Google Scholar]
  106. Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB. 106.  2008. Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320:1643–47 [Google Scholar]
  107. Schlackow M, Marguerat S, Proudfoot NJ, Bähler J, Erban R, Gullerova M. 107.  2013. Genome-wide analysis of poly(A) site selection in Schizosaccharomyces pombe. RNA 19:1617–31 [Google Scholar]
  108. Schoenberg DR. 108.  2011. Mechanisms of endonuclease-mediated mRNA decay. Wiley Interdiscip. Rev. RNA 2:582–600 [Google Scholar]
  109. Schultes EA, Spasic A, Mohanty U, Bartel DP. 109.  2005. Compact and ordered collapse of randomly generated RNA sequences. Nat. Struct. Mol. Biol. 12:1130–36 [Google Scholar]
  110. Schulz S, Doller A, Pendini NR, Wilce JA, Pfeilschifter J, Eberhardt W. 110.  2013. Domain-specific phosphomimetic mutation allows dissection of different protein kinase C (PKC) isotype-triggered activities of the RNA binding protein HuR. Cell. Signal. 25:2485–95 [Google Scholar]
  111. Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. 111.  2008. Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63 [Google Scholar]
  112. Severt WL, Biber TU, Wu X, Hecht NB, DeLorenzo RJ, Jakoi ER. 112.  1999. The suppression of testis–brain RNA binding protein and kinesin heavy chain disrupts mRNA sorting in dendrites. J. Cell Sci. 112:3691–702 [Google Scholar]
  113. Sharova LV, Sharov AA, Nedorezov T, Piao Y, Shaik N, Ko MS. 113.  2009. Database for mRNA half-life of 19,977 genes obtained by DNA microarray analysis of pluripotent and differentiating mouse embryonic stem cells. DNA Res 16:45–58 [Google Scholar]
  114. Shen Z, Paquin N, Forget A, Chartrand P. 114.  2009. Nuclear shuttling of She2p couples ASH1 mRNA localization to its translational repression by recruiting Loc1p and Puf6p. Mol. Biol. Cell 20:2265–75 [Google Scholar]
  115. Shepard PJ, Choi EA, Lu J, Flanagan LA, Hertel KJ, Shi Y. 115.  2011. Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq. RNA 17:761–72 [Google Scholar]
  116. Shieh YW, Minguez P, Bork P, Auburger JJ, Guilbride DL. 116.  et al. 2015. Operon structure and cotranslational subunit association direct protein assembly in bacteria. Science 350:678–80 [Google Scholar]
  117. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M. 117.  et al. 2005. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 15:1034–50 [Google Scholar]
  118. Singh G, Pratt G, Yeo GW, Moore MJ. 118.  2015. The clothes make the mRNA: past and present trends in mRNP fashion. Annu. Rev. Biochem. 84:325–54 [Google Scholar]
  119. Spies N, Burge CB, Bartel DP. 119.  2013. 3′ UTR-isoform choice has limited influence on the stability and translational efficiency of most mRNAs in mouse fibroblasts. Genome Res 23:2078–90 [Google Scholar]
  120. Stalder L, Heusermann W, Sokol L, Trojer D, Wirz J. 120.  et al. 2013. The rough endoplasmatic reticulum is a central nucleation site of siRNA-mediated RNA silencing. EMBO J 32:1115–27 [Google Scholar]
  121. Sugimoto Y, König J, Hussain S, Zupan B, Curk T. 121.  et al. 2012. Analysis of CLIP and iCLIP methods for nucleotide-resolution studies of protein–RNA interactions. Genome Biol 13:R67 [Google Scholar]
  122. Taliaferro JM, Lambert NJ, Sudmant PH, Dominguez D, Merkin JJ. 122.  et al. 2016. RNA sequence context effects measured in vitro predict in vivo protein binding and regulation. Mol. Cell 64:294–306 [Google Scholar]
  123. Taliaferro JM, Wang ET, Burge CB. 123.  2014. Genomic analysis of RNA localization. RNA Biol 11:1040–50 [Google Scholar]
  124. ten Klooster JP, Leeuwen I, Scheres N, Anthony EC, Hordijk PL. 124.  2007. Rac1-induced cell migration requires membrane recruitment of the nuclear oncogene SET. EMBO J 26:336–45 [Google Scholar]
  125. Tian B, Manley JL. 125.  2013. Alternative cleavage and polyadenylation: the long and short of it. Trends Biochem. Sci. 38:312–20 [Google Scholar]
  126. Trcek T, Larson DR, Moldon A, Query CC, Singer RH. 126.  2011. Single-molecule mRNA decay measurements reveal promoter-regulated mRNA stability in yeast. Cell 147:1484–97 [Google Scholar]
  127. Tsvetanova NG, Klass DM, Salzman J, Brown PO. 127.  2010. Proteome-wide search reveals unexpected RNA-binding proteins in Saccharomyces cerevisiae. PLOS ONE 5:e12671 [Google Scholar]
  128. Tu BP, Kudlicki A, Rowicka M, McKnight SL. 128.  2005. Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science 310:1152–58 [Google Scholar]
  129. Ule J, Jensen KB, Ruggiu M, Mele A, Ule A, Darnell RB. 129.  2003. CLIP identifies Nova-regulated RNA networks in the brain. Science 302:1212–15 [Google Scholar]
  130. Ulitsky I, Shkumatava A, Jan C, Subtelny AO, Koppstein D. 130.  et al. 2012. Extensive alternative polyadenylation during zebrafish development. Genome Res 22:2054–66 [Google Scholar]
  131. van Meer G, Voelker DR, Feigenson GW. 131.  2008. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9:112–24 [Google Scholar]
  132. Van Nostrand EL, Pratt GA, Shishkin AA, Gelboin-Burkhart C, Fang MY. 132.  et al. 2016. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods 13:508–14 [Google Scholar]
  133. Vourekas A, Alexiou P, Vrettos N, Maragkakis M, Mourelatos Z. 133.  2016. Sequence-dependent but not sequence-specific piRNA adhesion traps mRNAs to the germ plasm. Nature 531:390–94 [Google Scholar]
  134. Wallace EW, Kear-Scott JL, Pilipenko EV, Schwartz MH, Laskowski PR. 134.  et al. 2015. Reversible, specific, active aggregates of endogenous proteins assemble upon heat stress. Cell 162:1286–98 [Google Scholar]
  135. Walter P, Johnson AE. 135.  1994. Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annu. Rev. Cell Biol. 10:87–119 [Google Scholar]
  136. Wang ET, Cody NA, Jog S, Biancolella M, Wang TT. 136.  et al. 2012. Transcriptome-wide regulation of pre-mRNA splicing and mRNA localization by muscleblind proteins. Cell 150:710–24 [Google Scholar]
  137. Wang Y, Arribas-Layton M, Chen Y, Lykke-Andersen J, Sen GL. 137.  2015. DDX6 orchestrates mammalian progenitor function through the mRNA degradation and translation pathways. Mol. Cell 60:118–30 [Google Scholar]
  138. Weber SC, Brangwynne CP. 138.  2012. Getting RNA and protein in phase. Cell 149:1188–91 [Google Scholar]
  139. Weinberg DE, Shah P, Eichhorn SW, Hussmann JA, Plotkin JB, Bartel DP. 139.  2016. Improved ribosome-footprint and mRNA measurements provide insights into dynamics and regulation of yeast translation. Cell Rep 14:1787–99 [Google Scholar]
  140. Wells JN, Bergendahl LT, Marsh JA. 140.  2015. Co-translational assembly of protein complexes. Biochem. Soc. Trans. 43:1221–26 [Google Scholar]
  141. Whitty A. 141.  2008. Cooperativity and biological complexity. Nat. Chem. Biol. 4:435–39 [Google Scholar]
  142. Wissink EM, Fogarty EA, Grimson A. 142.  2016. High-throughput discovery of post-transcriptional cis-regulatory elements. BMC Genom 17:177 [Google Scholar]
  143. Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V. 143.  et al. 2005. Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434:338–45 [Google Scholar]
  144. Yartseva V, Takacs CM, Vejnar CE, Lee MT, Giraldez AJ. 144.  2016. RESA identifies mRNA-regulatory sequences at high resolution. Nat. Methods 14:201–7 [Google Scholar]
  145. Yeo GW, Coufal NG, Liang TY, Peng GE, Fu XD, Gage FH. 145.  2009. An RNA code for the FOX2 splicing regulator revealed by mapping RNA–protein interactions in stem cells. Nat. Struct. Mol. Biol. 16:130–37 [Google Scholar]
  146. Zabezhinsky D, Slobodin B, Rapaport D, Gerst JE. 146.  2016. An essential role for COPI in mRNA localization to mitochondria and mitochondrial function. Cell Rep 15:540–49 [Google Scholar]
  147. Zaessinger S, Busseau I, Simonelig M. 147.  2006. Oskar allows nanos mRNA translation in Drosophila embryos by preventing its deadenylation by Smaug/CCR4. Development 133:4573–83 [Google Scholar]
  148. Zhang H, Elbaum-Garfinkle S, Langdon EM, Taylor N, Occhipinti P. 148.  et al. 2015. RNA controls PolyQ protein phase transitions. Mol. Cell 60:220–30 [Google Scholar]
  149. Zhao W, Pollack JL, Blagev DP, Zaitlen N, McManus MT, Erle DJ. 149.  2014. Massively parallel functional annotation of 3′ untranslated regions. Nat. Biotechnol. 32:387–91 [Google Scholar]
  150. Zhou HL, Geng C, Luo G, Lou H. 150.  2013. The p97-UBXD8 complex destabilizes mRNA by promoting release of ubiquitinated HuR from mRNP. Genes Dev 27:1046–58 [Google Scholar]
  151. Zid BM, O'Shea EK. 151.  2014. Promoter sequences direct cytoplasmic localization and translation of mRNAs during starvation in yeast. Nature 514:117–21 [Google Scholar]
  152. Zimyanin VL, Belaya K, Pecreaux J, Gilchrist MJ, Clark A. 152.  et al. 2008. In vivo imaging of oskar mRNA transport reveals the mechanism of posterior localization. Cell 134:843–53 [Google Scholar]
/content/journals/10.1146/annurev-genet-120116-024704
Loading
/content/journals/10.1146/annurev-genet-120116-024704
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error