Semin Liver Dis 2011; 31(2): 215-222
DOI: 10.1055/s-0031-1276641
© Thieme Medical Publishers

Genomics in the Post-GWAS Era

Brian D. Juran1 , Konstantinos N. Lazaridis1
  • 1Division of Gastroenterology and Hepatology, Center for Basic Research in Digestive Diseases, Mayo Clinic College of Medicine, Rochester, Minnesota
Further Information

Publication History

Publication Date:
02 May 2011 (online)

ABSTRACT

The field of genomics has entered a new era in which the ability to identify genetic variants that impact complex human traits and disease in an unbiased fashion using genome-wide approaches is widely accessible. To date, the workhorse of these efforts has been the genome-wide association study (GWAS), which has quickly moved from novel to routine, and has provided key insights into aspects of the underlying allelic architecture of complex traits. The main lesson learned from the early GWAS efforts is that though many disease-associated variants are often discovered, most have only a minor effect on disease, and in total explain only a small amount of the apparent heritability. Here we provide a brief overview of the genetic variation classes that may harbor the heritability missing from GWAS, and touch on approaches that will be leveraged in the coming years as genomics—and by extension medicine—becomes increasingly personalized.

REFERENCES

  • 1 Reich D E, Lander E S. On the allelic spectrum of human disease.  Trends Genet. 2001;  17 (9) 502-510
  • 2 Consortium T IH. International HapMap Consortium . A haplotype map of the human genome.  Nature. 2005;  437 (7063) 1299-1320
  • 3 Ku C S, Loy E Y, Pawitan Y, Chia K S. The pursuit of genome-wide association studies: where are we now?.  J Hum Genet. 2010;  55 (4) 195-206
  • 4 Hindorff L A, Sethupathy P, Junkins H A et al.. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits.  Proc Natl Acad Sci U S A. 2009;  106 (23) 9362-9367
  • 5 Voight B F, Scott L J, Steinthorsdottir V MAGIC investigators et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis.  Nat Genet. 2010;  42 (7) 579-589
  • 6 Cirulli E T, Goldstein D B. Uncovering the roles of rare variants in common disease through whole-genome sequencing.  Nat Rev Genet. 2010;  11 (6) 415-425
  • 7 Hirschhorn J N. Genomewide association studies—illuminating biologic pathways.  N Engl J Med. 2009;  360 (17) 1699-1701
  • 8 Brest P, Corcelle E A, Cesaro A et al.. Autophagy and Crohn's disease: at the crossroads of infection, inflammation, immunity, and cancer.  Curr Mol Med. 2010;  10 (5) 486-502
  • 9 Visscher P M, Hill W G, Wray N R. Heritability in the genomics era—concepts and misconceptions.  Nat Rev Genet. 2008;  9 (4) 255-266
  • 10 Hill W G, Goddard M E, Visscher P M. Data and theory point to mainly additive genetic variance for complex traits.  PLoS Genet. 2008;  4 (2) e1000008
  • 11 Manolio T A, Collins F S, Cox N J et al.. Finding the missing heritability of complex diseases.  Nature. 2009;  461 (7265) 747-753
  • 12 Katta S, Kaur I, Chakrabarti S. The molecular genetic basis of age-related macular degeneration: an overview.  J Genet. 2009;  88 (4) 425-449
  • 13 Cichon S, Craddock N, Daly M Psychiatric GWAS Consortium Coordinating Committee et al. Genomewide association studies: history, rationale, and prospects for psychiatric disorders.  Am J Psychiatry. 2009;  166 (5) 540-556
  • 14 McCarthy M I. Exploring the unknown: assumptions about allelic architecture and strategies for susceptibility variant discovery.  Genome Med. 2009;  1 (7) 66
  • 15 Goldstein D B. Common genetic variation and human traits.  N Engl J Med. 2009;  360 (17) 1696-1698
  • 16 McCarthy M I, Abecasis G R, Cardon L R et al.. Genome-wide association studies for complex traits: consensus, uncertainty and challenges.  Nat Rev Genet. 2008;  9 (5) 356-369
  • 17 Marchini J, Howie B. Genotype imputation for genome-wide association studies.  Nat Rev Genet. 2010;  11 (7) 499-511
  • 18 Teer J K, Mullikin J C. Exome sequencing: the sweet spot before whole genomes.  Hum Mol Genet. 2010;  19 (R2) R145-R151
  • 19 Ng S B, Buckingham K J, Lee C et al.. Exome sequencing identifies the cause of a mendelian disorder.  Nat Genet. 2010;  42 (1) 30-35
  • 20 Ng S B, Bigham A W, Buckingham K J et al.. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome.  Nat Genet. 2010;  42 (9) 790-793
  • 21 Gilissen C, Arts H H, Hoischen A et al.. Exome sequencing identifies WDR35 variants involved in Sensenbrenner syndrome.  Am J Hum Genet. 2010;  87 (3) 418-423
  • 22 Pritchard J K. Are rare variants responsible for susceptibility to complex diseases?.  Am J Hum Genet. 2001;  69 (1) 124-137
  • 23 Lettre G, Lange C, Hirschhorn J N. Genetic model testing and statistical power in population-based association studies of quantitative traits.  Genet Epidemiol. 2007;  31 (4) 358-362
  • 24 Cordell H J. Detecting gene-gene interactions that underlie human diseases.  Nat Rev Genet. 2009;  10 (6) 392-404
  • 25 Yang Q, Khoury M J, Sun F, Flanders W D. Case-only design to measure gene-gene interaction.  Epidemiology. 1999;  10 (2) 167-170
  • 26 Hoh J, Ott J. Mathematical multi-locus approaches to localizing complex human trait genes.  Nat Rev Genet. 2003;  4 (9) 701-709
  • 27 Zhao J, Jin L, Xiong M. Test for interaction between two unlinked loci.  Am J Hum Genet. 2006;  79 (5) 831-845
  • 28 Ruiz-Marín M, Matilla-García M, Cordoba J A et al.. An entropy test for single-locus genetic association analysis.  BMC Genet. 2010;  11 19
  • 29 Sucheston L, Chanda P, Zhang A, Tritchler D, Ramanathan M. Comparison of information-theoretic to statistical methods for gene-gene interactions in the presence of genetic heterogeneity.  BMC Genomics. 2010;  11 487
  • 30 Thomas D, Stram D, Dwyer J. Exposure measurement error: influence on exposure-disease. Relationships and methods of correction.  Annu Rev Public Health. 1993;  14 69-93
  • 31 Li R, Boerwinkle E, Olshan A F et al.. Glutathione S-transferase genotype as a susceptibility factor in smoking-related coronary heart disease.  Atherosclerosis. 2000;  149 (2) 451-462
  • 32 Gauderman W J. Sample size requirements for matched case-control studies of gene-environment interaction.  Stat Med. 2002;  21 (1) 35-50
  • 33 Thomas D. Gene-environment-wide association studies: emerging approaches.  Nat Rev Genet. 2010;  11 (4) 259-272
  • 34 Purcell S, Neale B, Todd-Brown K et al.. PLINK: a tool set for whole-genome association and population-based linkage analyses.  Am J Hum Genet. 2007;  81 (3) 559-575
  • 35 Zhang X, Pan F, Xie Y, Zou F, Wang W. COE: a general approach for efficient genome-wide two-locus epistasis test in disease association study.  J Comput Biol. 2010;  17 (3) 401-415
  • 36 Brinza D, Schultz M, Tesler G, Bafna V. RAPID detection of gene-gene interactions in genome-wide association studies.  Bioinformatics. 2010;  26 (22) 2856-2862
  • 37 Motsinger A A, Ritchie M D. Multifactor dimensionality reduction: an analysis strategy for modelling and detecting gene-gene interactions in human genetics and pharmacogenomics studies.  Hum Genomics. 2006;  2 (5) 318-328
  • 38 Calle M L, Urrea V, Malats N, Van Steen K. mbmdr: an R package for exploring gene-gene interactions associated with binary or quantitative traits.  Bioinformatics. 2010;  26 (17) 2198-2199
  • 39 Gui J, Andrew A S, Andrews P et al.. A simple and computationally efficient sampling approach to covariate adjustment for multifactor dimensionality reduction analysis of epistasis.  Hum Hered. 2010;  70 (3) 219-225
  • 40 Jiang R, Tang W, Wu X, Fu W. A random forest approach to the detection of epistatic interactions in case-control studies.  BMC Bioinformatics. 2009;  10 (Suppl 1) S65
  • 41 Günther F, Wawro N, Bammann K. Neural networks for modeling gene-gene interactions in association studies.  BMC Genet. 2009;  10 87
  • 42 Zhang Y. Bayesian epistasis association mapping via SNP imputation.  Biostatistics. 2010;  Epub ahead of print
  • 43 Hawkins R D, Hon G C, Ren B. Next-generation genomics: an integrative approach.  Nat Rev Genet. 2010;  11 (7) 476-486
  • 44 Farnham P J. Insights from genomic profiling of transcription factors.  Nat Rev Genet. 2009;  10 (9) 605-616
  • 45 Laird P W. Principles and challenges of genome-wide DNA methylation analysis.  Nat Rev Genet. 2010;  11 (3) 191-203
  • 46 Cookson W, Liang L, Abecasis G, Moffatt M, Lathrop M. Mapping complex disease traits with global gene expression.  Nat Rev Genet. 2009;  10 (3) 184-194
  • 47 Moffatt M F, Kabesch M, Liang L et al.. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma.  Nature. 2007;  448 (7152) 470-473
  • 48 Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics.  Nat Rev Genet. 2009;  10 (1) 57-63
  • 49 Griffith M, Griffith O L, Mwenifumbo J et al.. Alternative expression analysis by RNA sequencing.  Nat Methods. 2010;  7 (10) 843-847
  • 50 Pastinen T. Genome-wide allele-specific analysis: insights into regulatory variation.  Nat Rev Genet. 2010;  11 (8) 533-538
  • 51 Ozsolak F, Goren A, Gymrek M et al.. Digital transcriptome profiling from attomole-level RNA samples.  Genome Res. 2010;  20 (4) 519-525
  • 52 Kuehn B M. Inconsistent results, inaccurate claims plague direct-to-consumer gene tests.  JAMA. 2010;  304 (12) 1313-1315
  • 53 Mack G S. FDA holds court on post hoc data linking KRAS status to drug response.  Nat Biotechnol. 2009;  27 (2) 110-112
  • 54 Klein T E, Altman R B, Eriksson N International Warfarin Pharmacogenetics Consortium et al. Estimation of the warfarin dose with clinical and pharmacogenetic data.  N Engl J Med. 2009;  360 (8) 753-764

Konstantinos N LazaridisM.D. 

Center for Basic Research in Digestive Diseases, Mayo Clinic College of Medicine

200 First Street SW, Rochester, MN 55905

Email: lazaridis.konstantinos@mayo.edu

    >