Semin Respir Crit Care Med 2008; 29(6): 610-619
DOI: 10.1055/s-0028-1101271
© Thieme Medical Publishers

Environmental Triggers and Susceptibility Factors in Idiopathic Granulomatous Diseases

Paolo Spagnolo1 , Luca Richeldi1 , Roland M. du Bois2
  • 1Research Center on Rare Lung Diseases (MaRP), Department of Respiratory Diseases, University of Modena and Reggio Emilia, Modena, Italy
  • 2Department of Medicine, National Jewish Health, Denver, Colorado
Further Information

Publication History

Publication Date:
16 February 2009 (online)

ABSTRACT

Our understanding of the pathophysiology of granulomatous diseases has increased substantially during the past few years. However, despite many environmental agents (particularly of infectious origin) capable of inducing granulomatous inflammation, we do not know why only a small percentage of exposed individuals develop the disease, suggesting that a particular trigger results in overtly recognizable phenotypes only when the appropriate genetic trait also occurs. This review focuses on a research area that has been intensively investigated recently, and reports evidence for an individual predisposition to develop pulmonary granulomatous diseases of unknown origin, specifically sarcoidosis, Blau syndrome, and systemic vasculitides.

Recent findings reinforce the hypothesis that transmissible agents, particularly mycobacteria, may be causative in some sarcoidosis cases, but the matter remains controversial due to the inability to consistently isolate microorganisms in pathological specimens. Whatever the etiology, future studies should focus on specific disease phenotypes to identify more homogeneous populations for analysis. This approach proved to be fruitful in both sarcoidosis and Wegener granulomatosis, suggesting that stratification of data by clinical phenotypes may discover genetic associations that analysis of disease susceptibility alone would fail to detect. Unraveling how genetic risk factors and environmental triggers interact to determine the disease is challenging but will inevitably have an impact on both diagnostic and therapeutic strategies in granulomatous lung diseases.

REFERENCES

  • 1 Richeldi L, Sorrentino R, Saltini C. HLA-DPB1 glutamate 69: a genetic marker of beryllium disease.  Science. 1993;  262 242-244
  • 2 Samuel G, Maier L A. Immunology of chronic beryllium disease.  Curr Opin Allergy Clin Immunol. 2008;  8 126-134
  • 3 Iannuzzi M C, Rybicki B A, Teirstein A S. Sarcoidosis.  N Engl J Med. 2007;  357 2153-2165
  • 4 Siltzbach L E, James D G, Neville E et al.. Course and prognosis of sarcoidosis around the world.  Am J Med. 1974;  57 847-852
  • 5 Baughman R P, Lower E E, du Bois R M. Sarcoidosis.  Lancet. 2003;  361 1111-1118
  • 6 Hunninghake G W, Costabel U, Ando M et al.. ATS/ERS/WASOG statement on sarcoidosis.  Sarcoidosis Vasc Diffuse Lung Dis. 1999;  16 149-173
  • 7 McGrath D S, Goh N, Foley P, du Bois R M. Sarcoidosis: genes and microbes – soil or seed?.  Sarcoidosis Vasc Diffuse Lung Dis. 2001;  18 149-164
  • 8 Moller D R, Chen E S. Genetic basis of remitting sarcoidosis: triumph of the trimolecular complex?.  Am J Respir Cell Mol Biol. 2002;  27 391-395
  • 9 Jones C M, Lake R A, Wijeyekoon J B, Mitchell D M, du Bois R M, O'Hehir R E. Oligoclonal V gene usage by T lymphocytes in bronchoalveolar lavage fluid from sarcoidosis patients.  Am J Respir Cell Mol Biol. 1996;  14 470-477
  • 10 Grunewald J, Wahlstrom J, Berlin M, Wigzell H, Eklund A, Olerup O. Lung restricted T cell receptor AV2S3 + CD4 + T cell expansions in sarcoidosis patients with a shared HLA-DR beta chain conformation.  Thorax. 2002;  57 348-352
  • 11 Forrester J M, Newman L S, Wang Y, King Jr T E, Kotzin B L. Clonal expansion of lung V delta 1 + T cells in pulmonary sarcoidosis.  J Clin Invest. 1993;  91 292-300
  • 12 Grunewald J, Shigematsu M, Nagai S. T cell receptor V gene expression in HLA typed Japanese patients with sarcoidosis.  Am J Respir Crit Care Med. 1995;  151 151-156
  • 13 Grunewald J, Hultman T, Bucht A et al.. Restricted usage of TCR V alpha/J alpha gene segments with different nucleotide but identical amino acid sequences in HLA-DR3 + ve sarcoidosis.  Mol Med. 1995;  1 287-296
  • 14 Kent D C, Houk V N, Slliot R C, Sokolowski Jr J W, Baker J K, Sorensen K. The definitive evaluation of sarcoidosis.  Am Rev Respir Dis. 1970;  101 721-727
  • 15 Drake W P, Pei Z, Pride D T, Collins R D, Cover T L, Blaser M J. Molecular analysis of sarcoidosis tissues for mycobacterium species DNA.  Emerg Infect Dis. 2002;  8 1334-1341
  • 16 Song Z, Marzilli L, Greenlee B M et al.. Mycobacterial catalase-peroxidase is a tissue antigen and target of the adaptive immune response in systemic sarcoidosis.  J Exp Med. 2005;  201 755-767
  • 17 Yi E S, Lee H, Suh Y K et al.. Experimental extrinsic allergic alveolitis and pulmonary angiitis induced by intratracheal or intravenous challenge with Corynebacterium parvum in sensitized rats.  Am J Pathol. 1996;  149 1303-1312
  • 18 Ichiyasu H, Suga M, Matsukawa A et al.. Functional roles of MCP-1 in Propionibacterium acnes–induced, T cell-mediated pulmonary granulomatosis in rabbits.  J Leukoc Biol. 1999;  65 482-491
  • 19 Abe C, Iwai K, Mikami R, Hosoda Y. Frequent isolation of Propionibacterium acnes from sarcoidosis lymph nodes.  Zentralbl Bakteriol Mikrobiol Hyg [A]. 1984;  256 541-547
  • 20 Eishi Y, Suga M, Ishige I et al.. Quantitative analysis of mycobacterial and propionibacterial DNA in lymph nodes of Japanese and European patients with sarcoidosis.  J Clin Microbiol. 2002;  40 198-204
  • 21 Ebe Y, Ikushima S, Yamaguchi T et al.. Proliferative response of peripheral blood mononuclear cells and levels of antibody to recombinant protein from Propionibacterium acnes DNA expression library in Japanese patients with sarcoidosis.  Sarcoidosis Vasc Diffuse Lung Dis. 2000;  17 256-265
  • 22 Parkes S A, Baker S B, Bourdillon R E et al.. Incidence of sarcoidosis in the Isle of Man.  Thorax. 1985;  40 284-287
  • 23 Kern D G, Neill M A, Wrenn D S, Varone J C. Investigation of a unique time-space cluster of sarcoidosis in firefighters.  Am Rev Respir Dis. 1993;  148 974-980
  • 24 Padilla M L, Schilero G J, Teirstein A S. Donor-acquired sarcoidosis.  Sarcoidosis Vasc Diffuse Lung Dis. 2002;  19 18-24
  • 25 Mitchell I C, Turk I L. Observations on the Kveim reaction using an animal model of granulomatous bowel disease.  Gut. 1991;  32 159-162
  • 26 Siltzbach L E. The Kveim test in sarcoidosis: a study of 750 patients.  JAMA. 1961;  178 476-482
  • 27 Munro C S, Mitchell D N. The Kveim response: still useful, still a puzzle.  Thorax. 1987;  42 321-331
  • 28 Rybicki B A, Iannuzzi M C. Epidemiology of sarcoidosis: recent advances and future prospects.  Semin Respir Crit Care Med. 2007;  28 22-35
  • 29 Rybicki B A, Major M, Popovich Jr J, Maliarik M J, Iannuzzi M C. Racial differences in sarcoidosis incidence: a 5-year study in a health maintenance organization.  Am J Epidemiol. 1997;  145 234-241
  • 30 Pietinalho A, Ohmichi M, Hiraga Y, Lofroos A B, Selroos O. The mode of presentation of sarcoidosis in Finland and Hokkaido, Japan: a comparative analysis of 571 Finnish and 686 Japanese patients.  Sarcoidosis Vasc Diffuse Lung Dis. 1996;  13 159-166
  • 31 Rybicki B A, Iannuzzi M C, Frederick M M et al.. Familial aggregation of sarcoidosis: a case-control etiologic study of sarcoidosis (ACCESS).  Am J Respir Crit Care Med. 2001;  164 2085-2091
  • 32 Mehra N K, Bovornkitti S. HLA and sarcoidosis.  Sarcoidosis. 1988;  5 87-89
  • 33 McIntyre J A, McKee K T, Loadholt C B, Mercurio S, Lin I. Increased HLA-B7 antigen frequency in South Carolina blacks in association with sarcoidosis.  Transplant Proc. 1977;  9 173-176
  • 34 Ina Y, Takada K, Yamamoto M et al.. HLA and sarcoidosis in the Japanese.  Chest. 1989;  95 1257-1261
  • 35 Smith M J, Turton C W, Mitchell D N et al.. Association of HLA B8 with spontaneous resolution in sarcoidosis.  Thorax. 1981;  36 296-298
  • 36 Grunewald J, Eklund A, Olerup O. Human leukocyte antigen class I alleles and the disease course in sarcoidosis patients.  Am J Respir Crit Care Med. 2004;  169 696-702
  • 37 Ina Y, Takada K, Yamamoto M et al.. HLA and sarcoidosis in the Japanese.  Chest. 1989;  95 1257-1261
  • 38 Nowack D, Goebel K M. Genetic aspects of sarcoidosis: class II histocompatibility antigens and a family study.  Arch Intern Med. 1987;  147 481-483
  • 39 Swider C, Schnittger L, Bogunia-Kubik K et al.. TNF-alpha and HLA-DR genotyping as potential prognostic markers in pulmonary sarcoidosis.  Eur Cytokine Netw. 1999;  10 143-146
  • 40 Berlin M, Fogdell-Hahn A, Olerup O, Eklund A, Grunewald J. HLA-DR predicts the prognosis in Scandinavian patients with pulmonary sarcoidosis.  Am J Respir Crit Care Med. 1997;  156 1601-1605
  • 41 Foley P J, McGrath D S, Puscinska E et al.. Human leukocyte antigen-DRB 1 position 11 residues are a common protective marker for sarcoidosis.  Am J Respir Cell Mol Biol. 2001;  25 272-277
  • 42 Martinetti M, Tinelli C, Kolek V et al.. “The sarcoidosis map”: a joint survey of clinical and immunogenetic findings in two European countries.  Am J Respir Crit Care Med. 1995;  152 557-564
  • 43 Rossman M D, Thompson B, Frederick M et al.. HLA-DRB1*1101: a significant risk factor for sarcoidosis in blacks and whites.  Am J Hum Genet. 2003;  73 720-735
  • 44 Rybicki B A, Maliarik M J, Poisson L M et al.. The major histocompatibility complex gene region and sarcoidosis susceptibility in African Americans.  Am J Respir Crit Care Med. 2003;  167 444-449
  • 45 Iannuzzi M C, Maliarik M J, Poisson L M, Rybicki B A. Sarcoidosis susceptibility and resistance HLA-DQB1 alleles in African Americans.  Am J Respir Crit Care Med. 2003;  167 1225-1231
  • 46 Voorter C E, Drent M, van den Berg-Loonen E M. Severe pulmonary sarcoidosis is strongly associated with the haplotype HLA-DQB1*0602–DRB1*150101 .  Hum Immunol. 2005;  66 826-835
  • 47 Voorter C E, Drent M, Hoitsma E, Faber K G, van den Berg-Loonen E M. Association of HLA DQB1 0602 in sarcoidosis patients with small fiber neuropathy.  Sarcoidosis Vasc Diffuse Lung Dis. 2005;  22 129-132
  • 48 Sato H, Grutters J C, Pantelidis P et al.. HLA-DQB1*0201: a marker for good prognosis in British and Dutch patients with sarcoidosis.  Am J Respir Cell Mol Biol. 2002;  27 406-412
  • 49 Grunewald J, Eklund A. Human leukocyte antigen genes may outweigh racial background when generating a specific immune response in sarcoidosis.  Eur Respir J. 2001;  17 1046-1048
  • 50 Ohta H, Tazawa R, Nakamura A et al.. Acute-onset sarcoidosis with erythema nodosum and polyarthralgia (Löfgren's syndrome) in Japan: a case report and a review of the literature.  Intern Med. 2006;  45 659-662
  • 51 Shammas R L, Movahed A. Sarcoidosis of the heart.  Clin Cardiol. 1993;  16 462-472
  • 52 Lympany P A, Petrek M, Southcott A M et al.. HLA-DPB polymorphisms: Glu 69 association with sarcoidosis.  Eur J Immunogenet. 1996;  23 353-359
  • 53 Maliarik M J, Chen K M, Major M L et al.. Analysis of HLA-DPB1 polymorphisms in African-Americans with sarcoidosis.  Am J Respir Crit Care Med. 1998;  158 111-114
  • 54 Schürmann M, Reichel P, Müller-Myhsok B et al.. Results from a genome-wide search for predisposing genes in sarcoidosis.  Am J Respir Crit Care Med. 2001;  164 840-846
  • 55 Iannuzzi M C, Iyengar S K, Gray-McGuire C et al.. Genome-wide search for sarcoidosis susceptibility genes in African Americans.  Genes Immun. 2005;  6 509-518
  • 56 Valentonyte R, Hampe J, Huse K et al.. Sarcoidosis is associated with a truncating splice site mutation in BTNL2 .  Nat Genet. 2005;  37 357-364
  • 57 Rybicki B A, Walewski J L, Maliarik M J et al.. The BTNL2 gene and sarcoidosis susceptibility in African Americans and Whites.  Am J Hum Genet. 2005;  77 491-499
  • 58 Spagnolo P, Sato H, Grutters J C et al.. Analysis of BTNL2 genetic polymorphisms in British and Dutch patients with sarcoidosis.  Tissue Antigens. 2007;  70 219-227
  • 59 Grutters J C, Sato H, Welsh K I, du Bois R M. The importance of sarcoidosis genotype to lung phenotype.  Am J Respir Cell Mol Biol. 2003;  29 S59-S62
  • 60 Spagnolo P, Sato H, Grunewald J et al.. A common haplotype of the C–C chemokine receptor 2 gene and HLA-DRB1*0301 are independent genetic risk factors for Löfgren's syndrome.  J Intern Med. 2008 May 29;  , [Epub ahead of print]
  • 61 Spagnolo P, Renzoni E A, Wells A U et al.. C–C chemokine receptor 2 and sarcoidosis: association with Lofgren's syndrome.  Am J Respir Crit Care Med. 2003;  168 1162-1166
  • 62 Valentonyte R, Hampe J, Croucher P J et al.. Study of C–C chemokine receptor 2 alleles in sarcoidosis, with emphasis on family-based analysis.  Am J Respir Crit Care Med. 2005;  171 1136-1141
  • 63 Rybicki B A, Maliarik M J, Poisson L M, Iannuzzi M C. Sarcoidosis and granuloma genes: a family-based study in African-Americans.  Eur Respir J. 2004;  24 251-257
  • 64 Guleva I, Seitzer U. Vitamin D receptor gene polymorphism in patients with sarcoidosis.  Am J Respir Crit Care Med. 2000;  162 760-761
  • 65 Niimi T, Tomita H, Sato S et al.. Vitamin D receptor gene polymorphism in patients with sarcoidosis.  Am J Respir Crit Care Med. 1999;  160 1107-1109
  • 66 Maliarik M J, Chen K M, Sheffer R G et al.. The natural resistance-associated macrophage protein gene in African Americans with sarcoidosis.  Am J Respir Cell Mol Biol. 2000;  22 672-675
  • 67 Foley P J, Lympany P S, Puscinska E, Zielinski J, Welsh K I, du Bois R M. Analysis of MHC encoded antigen-processing genes TAP1 and TAP2 polymorphisms in sarcoidosis.  Am J Respir Crit Care Med. 1999;  160 1009-1014
  • 68 Ishihara M, Ohno S, Mizuki N et al.. Genetic polymorphisms of the major histocompatibility complex-encoded antigen-processing genes TAP and LMP in sarcoidosis.  Hum Immunol. 1996;  45 105-110
  • 69 Schurmann M, Reichel P, Muller-Myhsok B et al.. Angiotensin-converting enzyme (ACE) gene polymorphisms and familial occurrence of sarcoidosis.  J Intern Med. 2001;  249 77-83
  • 70 McGrath D S, Foley P J, Petrek M et al.. Ace gene I/D polymorphism and sarcoidosis pulmonary disease severity.  Am J Respir Crit Care Med. 2001;  164 197-201
  • 71 Maliarik M J, Rybicki B A, Malvitz E et al.. Angiotensin-converting enzyme gene polymorphism and risk of sarcoidosis.  Am J Respir Crit Care Med. 1998;  158 1566-1570
  • 72 Tomita H, Ina Y, Sugiura Y et al.. Polymorphism in the angiotensin-converting enzyme (ACE) gene and sarcoidosis.  Am J Respir Crit Care Med. 1997;  156 255-259
  • 73 Arbustini E, Grasso M, Leo G et al.. Polymorphism of angiotensin-converting enzyme gene in sarcoidosis.  Am J Respir Crit Care Med. 1996;  153 851-854
  • 74 Grutters J C, Sato H, Pantelidis P et al.. Increased frequency of the uncommon tumor necrosis factor -857T allele in British and Dutch patients with sarcoidosis.  Am J Respir Crit Care Med. 2002;  165 1119-1124
  • 75 Seitzer U, Swider C, Stuber F et al.. Tumour necrosis factor alpha promoter gene polymorphism in sarcoidosis.  Cytokine. 1997;  9 787-790
  • 76 Spagnolo P, Renzoni E A, Wells A U et al.. C–C chemokine receptor 5 gene variants in relation to lung disease in sarcoidosis.  Am J Respir Crit Care Med. 2005;  172 721-728
  • 77 Petrek M, Drabek J, Kolek V et al.. CC chemokine receptor gene polymorphisms in Czech patients with pulmonary sarcoidosis.  Am J Respir Crit Care Med. 2000;  162 1000-1003
  • 78 Hizawa N, Yamaguchi E, Furuya K, Jinushi E, Ito A, Kawakami Y. The role of the C–C chemokine receptor 2 gene polymorphism V64I (CCR264I) in sarcoidosis in a Japanese population.  Am J Respir Crit Care Med. 1999;  159 2021-2023
  • 79 Spagnolo P, Sato H, Marshall S E et al.. Association between heat shock protein 70/Hom genetic polymorphisms and uveitis in patients with sarcoidosis.  Invest Ophthalmol Vis Sci. 2007;  48 3019-3025
  • 80 Grutters J C, Sato H, Pantelidis P et al.. Analysis of IL6 and IL1A gene polymorphisms in UK and Dutch patients with sarcoidosis.  Sarcoidosis Vasc Diffuse Lung Dis. 2003;  20 20-27
  • 81 Hutyrova B, Pantelidis P, Drabek J et al.. Interleukin-1 gene cluster polymorphisms in sarcoidosis and idiopathic pulmonary fibrosis.  Am J Respir Crit Care Med. 2002;  165 148-151
  • 82 Rybicki B A, Maliarik M J, Malvitz E et al.. The influence of T cell receptor and cytokine genes on sarcoidosis susceptibility in African Americans.  Hum Immunol. 1999;  60 867-874
  • 83 Pabst S, Baumgarten G, Stremmel A et al.. Toll-like receptor (TLR) 4 polymorphisms are associated with a chronic course of sarcoidosis.  Clin Exp Immunol. 2006;  143 420-426
  • 84 Gazouli M, Koundourakis A, Ikonomopoulos J et al.. CARD15/NOD2, CD14, and toll-like receptor 4 gene polymorphisms in Greek patients with sarcoidosis.  Sarcoidosis Vasc Diffuse Lung Dis. 2006;  23 23-29
  • 85 Milman N, Nielsen O H, Hviid T V, Fenger K. CARD15 single nucleotide polymorphisms 8, 12 and 13 are not increased in ethnic Danes with sarcoidosis.  Respiration. 2007;  74 76-79
  • 86 Schurmann M, Valentonyte R, Hampe J, Muller-Quernheim J, Schwinger E, Schreiber S. CARD15 gene mutations in sarcoidosis.  Eur Respir J. 2003;  22 748-754
  • 87 Martin T M, Doyle T M, Smith J R, Dinulescu D, Rust K, Rosenbaum J T. Uveitis in patients with sarcoidosis is not associated with mutations in NOD2 (CARD15).  Am J Ophthalmol. 2003;  136 933-935
  • 88 Hattori N, Niimi T, Sato S et al.. Cytotoxic T-lymphocyte antigen 4 gene polymorphisms in sarcoidosis patients.  Sarcoidosis Vasc Diffuse Lung Dis. 2005;  22 27-32
  • 89 Abdallah A, Sato H, Grutters J C et al.. Inhibitor kappa B-alpha (IkappaB-alpha) promoter polymorphisms in UK and Dutch sarcoidosis.  Genes Immun. 2003;  4 450-454
  • 90 Kruit A, Grutters J C, Ruven H J et al.. Transforming growth factor-beta gene polymorphisms in sarcoidosis patients with and without fibrosis.  Chest. 2006;  129 1584-1591
  • 91 Hill M R, Papafili A, Booth H et al.. Functional prostaglandin-endoperoxide synthase 2 polymorphism predicts poor outcome in sarcoidosis.  Am J Respir Crit Care Med. 2006;  174 915-922
  • 92 Blau E B. Familial granulomatous arthritis, iritis, and rash.  J Pediatr. 1985;  107 689-693
  • 93 Tromp G, Kuivaniemi H, Raphael S et al.. Genetic linkage of familial granulomatous inflammatory arthritis, skin rash, and uveitis to chromosome 16.  Am J Hum Genet. 1996;  59 1097-1107
  • 94 Miceli-Richard C, Lesage S, Rybojad M et al.. CARD15 mutations in Blau syndrome.  Nat Genet. 2001;  29 19-20
  • 95 Rybicki B A, Maliarik M J, Bock C H et al.. The Blau syndrome gene is not a major risk factor for sarcoidosis.  Sarcoidosis Vasc Diffuse Lung Dis. 1999;  16 203-208
  • 96 Schurmann M, Valentonyte R, Hampe J, Muller-Quernheim J, Schwinger E, Schreiber S. CARD15 gene mutations in sarcoidosis.  Eur Respir J. 2003;  22 748-754
  • 97 Raphael S A, Blau E B, Zhang W H, Hsu S H. Analysis of a large kindred with Blau syndrome for HLA, autoimmunity, and sarcoidosis.  Am J Dis Child. 1993;  147 842-848
  • 98 Hugot J P, Chamaillard M, Zouali H et al.. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease.  Nature. 2001;  411 599-603
  • 99 Ogura Y, Bonen D K, Inohara N et al.. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease.  Nature. 2001;  411 603-606
  • 100 Brown K K. Pulmonary vasculitis.  Proc Am Thorac Soc. 2006;  3 48-57
  • 101 Savige J, Gillis D, Benson E et al.. International Consensus Statement on Testing and Reporting of Antineutrophil Cytoplasmic Antibodies (ANCA).  Am J Clin Pathol. 1999;  111 507-513
  • 102 Csernok E, Muller A, Gross W. Immunopathology of ANCA-associated vasculitis.  Intern Med. 1999;  38 759-765
  • 103 Keogh K A, Specks U. Churg–Strauss syndrome.  Semin Respir Crit Care Med. 2006;  27 148-157
  • 104 Sablé-Fourtassou R, Cohen P, Mahr A et al.. Antineutrophil cytoplasmic antibodies and the Churg–Strauss syndrome.  Ann Intern Med. 2005;  143 632-638
  • 105 Lane S E, Watts R A, Bentham G et al.. Are environmental factors important in primary systemic vasculitis? A case-control study.  Arthritis Rheum. 2003;  48 814-823
  • 106 Wechsler M E, Finn D, Gunawardena D et al.. Churg–Strauss syndrome in patients receiving montelukast as treatment for asthma.  Chest. 2000;  117 708-713
  • 107 Wechsler M E, Garpestad E, Flier S R et al.. Pulmonary infiltrates, eosinophilia, and cardiomyopathy following corticosteroid withdrawal in patients with asthma receiving zafirlukast.  JAMA. 1998;  279 455-457
  • 108 Vaglio A, Martorana D, Maggiore U et al.. HLA-DRB4 as a genetic risk factor for Churg–Strauss syndrome.  Arthritis Rheum. 2007;  56 3159-3166
  • 109 Wieczorek S, Hellmich B, Gross W L, Epplen J T. Associations of Churg–Strauss syndrome with the HLA-DRB1 locus, and relationship to the genetics of antineutrophil cytoplasmic antibody-associated vasculitides: comment on the article by Vaglio et al.  Arthritis Rheum. 2008;  58 329-330
  • 110 Leavitt R Y, Fauci A S, Bloch D A et al.. The American College of Rheumatology 1990 criteria for the classification of Wegener's granulomatosis.  Arthritis Rheum. 1990;  33 1101-1107
  • 111 Hoffman G S, Kerr G S, Leavitt R Y et al.. Wegener granulomatosis: an analysis of 158 patients.  Ann Intern Med. 1992;  116 488-498
  • 112 Stone J H, Hoffman G S. Wegener's granulomatosis and lymphomatoid granulomatosis. In: Hocberg MC, Silmon AJ, Smolen JS, Weinblatt ME, Weisman MH Rheumatology. 3rd ed. New York; Mosby 2003: 1635-1648
  • 113 Popa E R, Stegeman C A, Kallenberg C GM et al.. Staphylococcus aureus and Wegener's granulomatosis.  Arthritis Res. 2002;  4 77-79
  • 114 Lane S E, Watts R A, Bentham G et al.. Are environmental factors important in primary systemic vasculitis? A case-control study.  Arthritis Rheum. 2003;  48 814-823
  • 115 Jagiello P, Gencik M, Arning L et al.. New genomic region for Wegener's granulomatosis as revealed by an extended association screen with 202 apoptosis-related genes.  Hum Genet. 2004;  114 468-477
  • 116 Salmon J E, Edberg J C, Brogle N L, Kimberly R P. Allelic polymorphisms of human Fc gamma receptor IIA and Fc gamma receptor IIIB: independent mechanisms for differences in human phagocyte function.  J Clin Invest. 1992;  89 1274-1281
  • 117 Dijstelbloem H M, Scheepers R H, Oost W W et al.. Fcgamma receptor polymorphisms in Wegener's granulomatosis: risk factors for disease relapse.  Arthritis Rheum. 1999;  42 1823-1827
  • 118 Huang D, Zhou Y, Hoffman G S. Pathogenesis: immunogenetic factors.  Best Pract Res Clin Rheumatol. 2001;  15 239-258
  • 119 Zhou Y, Giscombe R, Huang D et al.. Novel genetic association of Wegener's granulomatosis with the interleukin 10 gene.  J Rheumatol. 2002;  29 317-320
  • 120 Huang D, Giscombe R, Zhou Y et al.. Polymorphisms in CTLA-4 but not tumor necrosis factor-alpha or interleukin-1 beta genes are associated with Wegener's granulomatosis.  J Rheumatol. 2000;  27 397-401
  • 121 Allison J P, Krummel M F. The Yin and Yang of T cell costimulation.  Science. 1995;  270 932-933
  • 122 Vang T, Congia M, Macis M D et al.. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant.  Nat Genet. 2005;  37 1317-1319
  • 123 Jagiello P, Aries P, Arning L et al.. The PTPN22 620W allele is a risk factor for Wegener's granulomatosis.  Arthritis Rheum. 2005;  52 4039-4043

Roland M du BoisM.A. M.D. 

Department of Medicine, National Jewish Health

1400 Jackson St., Denver, CO 80206

Email: duBoisR@njc.org

    >