Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Multiple interacting domains contribute to p14ARF mediated inhibition of MDM2

Abstract

The small basic protein p14ARF, encoded by one of the alternative transcripts from the human INK4A/ARF locus, interferes with MDM2-mediated ubiquitination of the p53 tumour suppressor protein. The resultant stabilization of p53 leads to increased expression of p53-regulated genes, such as MDM2 itself and the cyclin-dependent kinase inhibitor p21CIP1. Here we relate physical interactions between p14ARF and MDM2, as determined using synthetic peptides and systematic deletions of p14ARF, with consequential effects on p53 stabilization and transcriptional activity. The data imply that the amino terminal half of p14ARF, encoded by the alternative first exon (exon 1β) contacts MDM2 through multiple domains that can independently impede MDM2-mediated degradation of p53, provided that they are localized in the cell nucleus. As well as identifying previously unrecognized functional domains, our findings offer an explanation for the relative paucity of missense mutations in exon 1β in human tumours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Ashcroft M, Vousden KH . 1999 Oncogene 18: 7637–7643

  • Bates S, Parry D, Bonetta L, Vousden K, Dickson C, Peters G . 1994 Oncogene 9: 1633–1640

  • Bothner B, Lewis WS, DiGiammarino EL, Weber JD, Bothner SJ, Kriwacki RW . 2001 J. Mol. Biol. 314: 263–277

  • Burri N, Shaw P, Bouzourene H, Sordat I, Sordat B, Gillet M, Schorderet D, Bosman FT, Chaubert P . 2001 Lab. Invest. 81: 217–229

  • DiGiammarino EL, Filippov I, Weber JD, Bothner B, Kriwacki RW . 2001 Biochemistry 40: 2379–2386

  • El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B . 1993 Cell 75: 817–825

  • Evan G, Littlewood T . 1998 Science 281: 1317–1322

  • Eymin B, Karayan L, Séité P, Brambilla C, Brambilla E, Larsen C-J, Gazzéri S . 2001 Oncogene 20: 1033–1041

  • Giaccia AJ, Kastan MB . 1998 Genes Dev. 12: 2973–2983

  • Haupt Y, Maya R, Kazaz A, Oren M . 1997 Nature 387: 296–299

  • Hollstein M, Rice K, Greenblatt MS, Soussi T, Fuchs R, Sørlie T, Hovig E, Smith-Sørensen B, Montesano R, Harris CC . 1994 Nucl. Acids Res. 22: 3551–3555

  • Honda R, Yasuda H . 1999 EMBO J. 18: 22–27

  • Kamijo T, Weber JD, Zambetti G, Zindy F, Roussel MF, Sherr CJ . 1998 Proc. Natl. Acad. Sci. USA 95: 8292–8297

  • Kubbutat MHG, Jones SN, Vousden KH . 1997 Nature 287: 299–303

  • Levine AJ . 1997 Cell 88: 323–331

  • Lindström MS, Klangby U, Inoue R, Pisa P, Wiman KG, Asker CE . 2000 Exp. Cell Res. 256: 400–410

  • Llanos S, Clark PA, Rowe J, Peters G . 2001 Nature Cell Biol. 3: 445–452

  • Lohrum MAE, Ashcroft M, Kubbutat MHG, Vousden KH . 2000 Curr. Biol. 10: 539–542

  • Midgley CA, Desterro JMP, Saville MK, Howard S, Sparks A, Hay RT, Lane DP . 2000 Oncogene 19: 2312–2323

  • Miyashita T, Reed JC . 1995 Cell 80: 293–299

  • Momand J, Jung D, Wilczynski S, Niland J . 1998 Nucl. Acids Res. 26: 3453–3459

  • Pomerantz J, Schreiber-Agus N, Liégeois NJ, Silverman A, Alland L, Chin L, Potes J, Chen K, Orlow I, Lee H-W, Cordon-Cardo C, DePinho RA . 1998 Cell 92: 713–723

  • Quelle DE, Cheng M, Ashmun RA, Sherr CJ . 1997 Proc. Natl. Acad. Sci. USA 94: 669–673

  • Rizos H, Darmanian AP, Mann GJ, Kefford RF . 2000 Oncogene 19: 2978–2985

  • Rizos H, Puig S, Badenas C, Malvehy J, Darmanian AP, Jiménez L, Milà M, Kefford RF . 2001 Oncogene 20: 5543–5547

  • Ruas M, Peters G . 1998 Biochim. Biophys. Acta 1378: 115–177

  • Sharpless NE, DePinho RA . 1999 Curr. Opin. Genet. Dev. 9: 22–30

  • Sherr CJ . 1998 Genes Dev. 12: 2984–2991

  • Soussi T, Dehouche K, Béroud C . 2000 Hum. Mutat. 15: 105–113

  • Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S, Palmero I, Hara E, Vousden KH, Peters G . 1998 EMBO J. 17: 5001–5014

  • Vogelstein B, Lane D, Levine AJ . 2000 Nature 408: 307–310

  • Weber JD, Kuo M-L, Bothner B, DiGiammarino EL, Kriwacki RW, Roussel MF, Sherr CJ . 2000 Mol. Cell. Biol. 20: 2517–2528

  • Weber JD, Taylor LJ, Roussel MF, Sherr CJ, Bar-Sagi D . 1999 Nature Cell Biol. 1: 20–26

  • Xirodimas D, Saville MK, Edling C, Lane DP, Lain S . 2001 Oncogene 20: 4972–4983

  • Zhang Y, Xiong Y . 1999 Molec. Cell 3: 579–591

  • Zhang Y, Xiong Y, Yarbrough WG . 1998 Cell 92: 725–734

Download references

Acknowledgements

We are grateful to S Drayton for helping with some of the experiments, to D Parry for the DP54-75 antiserum, to D Joshi and N O'Reilly for peptide synthesis, and to P Parker and N McDonald for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon Peters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, P., Llanos, S. & Peters, G. Multiple interacting domains contribute to p14ARF mediated inhibition of MDM2. Oncogene 21, 4498–4507 (2002). https://doi.org/10.1038/sj.onc.1205558

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205558

Keywords

This article is cited by

Search

Quick links