Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

To degrade or not to degrade: mechanisms and significance of endocytic recycling

Abstract

Newly endocytosed integral cell surface proteins are typically either directed for degradation or subjected to recycling back to the plasma membrane. The sorting of integral cell surface proteins, including signalling receptors, nutrient transporters, ion channels, adhesion molecules and polarity markers, within the endolysosomal network for recycling is increasingly recognized as an essential feature in regulating the complexities of physiology at the cell, tissue and organism levels. Historically, endocytic recycling has been regarded as a relatively passive process, where the majority of internalized integral proteins are recycled via a nonspecific sequence-independent ‘bulk membrane flow’ pathway. Recent work has increasingly challenged this view. The discovery of sequence-specific sorting motifs and the identification of cargo adaptors and associated coat complexes have begun to uncover the highly orchestrated nature of endosomal cargo recycling, thereby providing new insight into the function and (patho)physiology of this process.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The endolysosomal network.
Fig. 2: ESCRT-mediated degradative cargo sorting.
Fig. 3: Retrieval mechanisms.
Fig. 4: BAR domain-containing proteins in endosome tubule formation.

Similar content being viewed by others

References

  1. Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  PubMed  CAS  Google Scholar 

  2. Schreij, A. M., Fon, E. A. & McPherson, P. S. Endocytic membrane trafficking and neurodegenerative disease. Cell. Mol. Life Sci. 73, 1529–1545 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Kirchhausen, T., Owen, D. & Harrison, S. C. Molecular structure, function, and dynamics of clathrin-mediated membrane traffic. Cold Spring Harb. Perspect. Biol. 6, a016725 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Mayor, S., Parton, R. G. & Donaldson, J. G. Clathrin-independent pathways of endocytosis. Cold Spring Harb. Perspect. Biol. 6, a016758 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Lakadamyali, M., Rust, M. J. & Zhuang, X. Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes. Cell 124, 997–1009 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jean-Alphonse, F. et al. Spatially restricted G protein-coupled receptor activity via divergent endocytic compartments. J. Biol. Chem. 289, 3960–3977 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Kalaidzidis, I. et al. APPL endosomes are not obligatory endocytic intermediates but act as stable cargo-sorting compartments. J. Cell Biol. 211, 123–144 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sposini, S. et al. Integration of GPCR signaling and sorting from very early endosomes via opposing APPL1 mechanisms. Cell Rep. 21, 2855–2867 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Klumperman, J. & Raposo, G. The complex ultrastructure of the endolysosomal system. Cold Spring Harb. Perspect. Biol. 6, a016857 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Frankel, E. B. & Audhya, A. ESCRT-dependent cargo sorting at multivesicular endosomes. Semin. Cell. Dev. Biol. 74, 4–10 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Bright, N. A., Davis, L. J. & Luzio, J. P. Endolysosomes are the principal intracellular sites of acid hydrolyase activity. Curr. Biol. 26, 2233–2245 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Edgar, J. R. Q&A: What are exosomes, exactly? BMC Biol. 14, 46 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Seaman, M. N., Marcusson, E. G., Cereghino, J. L. & Emr, S. D. Endosome to Golgi retrieval of the vacuolar protein sorting receptor, Vps10p, requires the function of the VPS29, VPS30, and VPS35 gene products. J. Cell Biol. 137, 79–92 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maxfield, F. R. & McGraw, T. E. Endocytic recycling. Nat. Rev. Mol. Cell. Biol. 5, 121–132 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Grant, B. D. & Donaldson, J. G. Pathways and mechanisms of endocytic recycling. Nat. Rev. Mol. Cell. Biol. 10, 597–608 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hopkins, C. R. Intracellular routing of transferrin and transferrin receptors in epidermoid carcinoma A431 cells. Cell 35, 321–330 (1983).

    Article  CAS  PubMed  Google Scholar 

  17. Hopkins, C. R. & Trowbridge, I. S. Internalisation and processing of transferrin and the transferrin receptor in human carcinoma A431 cells. J. Cell Biol. 97, 508–521 (1983).

    Article  CAS  PubMed  Google Scholar 

  18. Csaba, Z. et al. Activated somatostatin type 2 receptors traffic in vivo in central neurons from dendrites to the trans-Golgi before recycling. Traffic 8, 820–834 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Escola, J. M., Kuenzi, G., Gaertner, H., Foti, M. & Hartley, O. CC chemokine receptor 5 (CCR5) desensitization: cycling receptors accumulate in the trans-Golgi network. J. Biol. Chem. 285, 41772–41780 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cheng, S. B. & Filardo, E. J. Trans-Golgi network (TGN) as a regulatory node for β1-adrenergic receptor (β1AR) down-modulation and recycling. J. Biol. Chem. 287, 14178–14191 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shafaq-Zadah, M. et al. Persistent cell migration and adhesion rely on retrograde transport of β1 integrin. Nat. Cell. Biol. 18, 54–64 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Abdullah, N., Beg, M., Soares, D., Dittman, J. S. & McGraw, T. E. Downregulation of a GPCR by β-arrestin2-mediated switch from an endosomal to a TGN recycling pathway. Cell Rep. 17, 2966–2978 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gillooly, D. J., Raiborg, C. & Stenmark, H. Phosphatidylinositol 3-phosphate is found in microdomains of early endosomes. Histochem. Cell Biol. 120, 445–453 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Clague, M. J., Liu, H. & Urbe, S. Governance of endocytic trafficking and signaling by reversible ubiquitylation. Dev. Cell 23, 457–466 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Katzmann, D. J., Babst, M. & Emr, S. D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal sorting complex, ESCRT-I. Cell 106, 145–155 (2001). By identifying ESCRT-I in yeast, this study provides the foundation for the subsequent identification of the other ESCRT complexes and hence our current mechanistic understanding of how ubiquitylated cargoes are sorted into ILVs for lysosomal degradation.

    Article  CAS  PubMed  Google Scholar 

  26. Christ, L., Raiborg, C., Wenzel, E. M., Campsteijn, C. & Stenmark, H. Cellular functions and molecular mechanisms of the ESCRT membrane-scission machinery. Trends Biochem. Sci. 42, 42–56 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Schonenberg, J., Lee, I. H., Iwasa, J. H. & Hurley, J. H. Reverse-topology membrane scission by the ESCRT proteins. Nat. Rev. Mol. Cell. Biol. 18, 5–17 (2017).

    Article  CAS  Google Scholar 

  28. Raiborg, C., Bache, K. G., Mehlum, A., Stang, E. & Stenmark, H. Hrs recruits clathrin to early endosomes. EMBO J. 20, 5008–5021 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sachse, M., Urbe, S., Oorschot, V., Strous, G. J. & Klumperman, J. Bilayered clathrin coats on endosomal vacuoles are involved in protein sorting toward lysosomes. Mol. Biol. Cell 13, 1313–1328 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Raiborg, C. et al. Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nat. Cell Biol. 4, 394–398 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Raiborg, C., Wesche, J., Malerod, L. & Stenmark, H. Flat clathrin coats on endosomes mediate degradative protein sorting by scaffolding Hrs in dynamic microdomains. J. Cell Sci. 119, 2414–2424 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Chiaruttini, N. & Roux, A. Dynamic and elastic shape transitions in curved ESCRT-III filaments. Curr. Opin. Cell Biol. 47, 126–135 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Dores, M. R. et al. ALIX binds a YPX(3)L motif of the GPCR PAR1 and mediates ubiquitin-independent ESCRT-III/MVB sorting. J. Cell Biol. 197, 407–419 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dores, M. R., Grimsey, N. J., Mendez, F. & Trejo, J. ALIX regulates the ubiquitin-independent lysosomal sorting of the P2Y1 purinergic receptor via a YPX3L motif. PLoS ONE 11, e0157587 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Babst, M. MVB vesicle formation: ESCRT-dependent, ESCRT-independent and everything in between. Curr. Opin. Cell Biol. 23, 452–457 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Edgar, J. R., Eden, E. R. & Futter, C. E. Hrs- and CD63-dependent competing mechanisms make different sized endosomal intraluminal vesicles. Traffic 15, 197–211 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. MacDonald, C., Buchkovich, N. J., Stringer, D. K., Emr, S. D. & Piper, R. C. Cargo ubiquitination is essential for multivesicular body intralumenal vesicle formation. EMBO Rep. 13, 331–338 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mageswaran, S. K., Johnson, N. K., Odorizzi, G. & Babst, M. Constitutively active ESCRT-II suppresses the MVB-sorting phenotype of ESCRT-0 and ESCRT-I mutants. Mol. Biol. Cell 26, 554–568 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jing, S. Q., Spencer, T., Miller, K., Hopkins, C. R. & Trowbridge, I. S. Role of the human transferrin receptor cytoplasmic domain in endocytosis - localization of a specific signal sequence for internalization. J. Cell Biol. 110, 283–294 (1990).

    Article  CAS  PubMed  Google Scholar 

  40. Dunn, K. W., McGraw, T. E. & Maxfield, F. R. Iterative fractionation of recycling receptors from lysosomally destined ligands in an early sorting endosome. J. Cell Biol. 109, 3303–3314 (1989).

    Article  CAS  PubMed  Google Scholar 

  41. Mayor, S., Presley, J. F. & Maxfield, F. R. Sorting of membrane-components from endosomes and subsequent recycling to the cell-surface occurs by a bulk flow process. J. Cell Biol. 121, 1257–1269 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Gueze, H. J., Slot, J. W., Strous, G. J., Lodish, H. F. & Schwartz, A. L. Intracellular site of asialoglycoprotein receptor-ligand uncoupling: double-label immunoelectron microscopy during receptor-mediated endocytosis. Cell 32, 277–287 (1983). Using double-label immunoelectron microscopy to visualize the asialoglycoprotein receptor and its asialoglycoprotein ligands in ultrathin cryosections from rat liver, this work establishes the central concept that recycling cargo is concentrated in tubular extensions of the early endosome that are largely devoid of ligand. Simply put, Figure 5 is beautiful!

    Article  Google Scholar 

  43. Hsu, V. W., Bai, M. & Li, J. Getting active: protein sorting in endocytic recycling. Nat. Rev. Mol. Cell. Biol. 13, 323–328 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Dai, J. et al. ACAP1 promotes endocytic recycling by recognising recycling sorting signals. Dev. Cell 7, 771–776 (2004). In identifying that the endosome-associated protein ACAP1 bound to a phenylalanine-based sequence in the cytosoplasmic domain of the TfR and establishing that this was required for the endocytic recycling of internalized TfR, this study begins to question the prevailing dogma that TfR recycling occurred through a sequence-independent ‘bulk flow’ mechanism.

    Article  CAS  PubMed  Google Scholar 

  45. Chen, C. et al. Snx3 regulates recycling of the transferrin receptor and iron assimilation. Cell Metab. 17, 343–352 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cao, T. T., Deacon, H. W., Reczek, D., Bretscher, A. & von Zastrow, M. A kinase-regulated PDZ-domain interaction controls endocytic sorting of the β2-adrenergic receptor. Nature 401, 286–290 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Puthenveedu, M. et al. Sequence-dependent sorting of recycling proteins by actin-stabilized endosomal microdomains. Cell 143, 761–773 (2010). This is an elegant study that, in comparing the recycling of the β2-adrenergic receptor with other bulk recycling cargoes, reveals the importance of endosomal actin polymerization in sequence-dependent recycling into endosomal tubules.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lauffer, B. E. L. et al. SNX27 mediates PDZ-directed sorting from endosomes to the plasma membrane. J. Cell Biol. 190, 565–574 (2010). This is the first study that convincingly shows a role for SNX27 in the endosomal retrieval and recycling of a PDZ-binding motif-containing cargo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Temkin, P. et al. SNX27 mediates retromer tubule entry and endosome-to-plasma membrane trafficking of signalling receptors. Nat. Cell Biol. 13, 715–721 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Vistein, R. & Puthenveedu, M. A. Reprogramming of G protein-coupled receptor recycling and signaling by a kinase switch. Proc. Natl Acad. Sci. USA 110, 15289–15294 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Varandas, K. C., Irannejad, R. & von Zastrow, M. Retromer endosome exit domains serve multiple trafficking destinations and regulate local G-protein activation by GPCRs. Curr. Biol. 26, 3129–3142 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Burd, C. & Cullen, P. J. Retromer: a master conductor of endosomal sorting. Cold Spring Harb. Perspect. Biol. 6, a016774 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. McNally, K. E. et al. Retriever is a multiprotein complex for retromer-independent endosomal cargo sorting. Nat. Cell Biol. 19, 1214–1225 (2017). This study describes the identification of an evolutionary conserved retromer-like complex called retriever and reveals its role in retromer-independent endosomal retrieval and recycling of numerous cargoes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Seaman, M. N., McCaffery, J. M. & Emr, S. D. A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J. Cell Biol. 142, 665–681 (1998). This is the seminal work that identifies the pentameric yeast retromer complex and defines its role in endosome to Golgi transport.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Verges, M. et al. The mammalian retromer regulates transcytosis of the polymeric immunoglobulin receptor. Nat. Cell Biol. 6, 763–769 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Chen, D. et al. Retromer is required for apoptotic cell clearance by phagocytic receptor recycling. Science 327, 1261–1264 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Steinberg, F. et al. A global analysis of SNX27-retromer assembly and cargo specificity reveals a function in glucose and metal ion transport. Nat. Cell Biol. 15, 461–471 (2013). By utilizing quantitative proteomics, this study defines the mechanism for SNX27 coupling to retromer and reveals over 100 cell surface integral proteins, including numerous nutrient transporters, which require SNX27–retromer assembly for their retrieval and recycling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Seaman, M. N. J. Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer. J. Cell Biol. 165, 111–122 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Arighi, C. N., Hartnell, L. M., Aguilar, R. C., Haft, C. R. & Bonifacino, J. S. Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J. Cell Biol. 165, 123–133 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Simonetti, B., Danson, C. M., Heesom, K. J. & Cullen, P. J. Sequence-dependent cargo recognition by SNX-BARs mediates retromer-independent transport of CI-MPR. J. Cell Biol. 216, 3695–3712 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kvainickas, A. et al. Cargo-selective SNX-BAR proteins mediate retromer trimer independent retrograde transport. J. Cell Biol. 216, 3677–3693 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hierro, A. et al. Functional architecture of the retromer cargo-recognition complex. Nature 449, 1063–1067 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lucas, M. et al. Structural mechanism for cargo recognition by the retromer complex. Cell 167, 1623–1635 (2016). Through resolving the structure of a SNX3–VPS26–VPS35 complex with the cytosoplasmic tail of the iron transporter DMT1-II, this study reveals the interactions through which membrane recruitment of retromer is coordinated with the direct association to the DMT1-II recycling motif.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rojas, R. et al. Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7. J. Cell Biol. 183, 513–526 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Seaman, M. N. J., Harbour, M. E., Tattersall, D., Read, E. & Bright, N. Membrane recruitment of the cargo-selective retromer subcomplex is catalysed by the small GTPase Rab7 and inhibited by the Rab-GAP TBC1D5. J. Cell Sci. 122, 2371–2382 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Harterink, M. et al. SNX3-dependent retromer pathway mediates retrograde transport of the Wnt sorting receptor Wntless and is required for Wnt secretion. Nat. Cell Biol. 13, 914–923 (2011). Through biochemical analysis combined with detailed in vivo genetic analysis, this study reveals the importance of SNX3 coupling to retromer in the trafficking of Wntless and the secretion of Wnt morphogens.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Harrison, M. S. et al. A mechanism for retromer endosomal coat complex assembly with cargo. Proc. Natl Acad. Sci. USA 111, 267–272 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Tabuchi, M., Yanatori, I., Kawai, Y. & Kishi, F. Retromer-mediated direct sorting is required for proper endosomal recycling of the mammalian iron transporter DMT1. J. Cell Sci. 123, 756–766 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Seaman, M. N. Identification of a novel conserved sorting motif required for retromer-mediated endosome-to-TGN retrieval. J. Cell Sci. 120, 2378–2389 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Lunn, M. L. et al. A unique sorting nexin regulates trafficking of potassium channels via a PDZ domain interaction. Nat. Neurosci. 10, 1249–1259 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Balana, B. et al. Mechanism underlying selective regulation of G protein-gated inwardly rectifying potassium channels by the psychostimulant-sensitive sorting nexin 27. Proc. Natl Acad. Sci. USA 108, 5831–5836 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ghai, R. et al. Phox homology band 4.1/ezrin/radixin/moesin-like proteins function as molecular scaffolds that interact with cargo receptors and Ras GTPases. Proc. Natl Acad. Sci. USA 108, 7763–7768 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ghai, R. et al. Structural basis for endosomal trafficking of diverse transmembrane cargos by PX-FERM proteins. Proc. Natl Acad. Sci. USA 110, E643–E652 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Clairfeuille, T. et al. A molecular code for endosomal recycling of phosphorylated cargos by the SNX27-retromer complex. Nat. Struct. Mol. Biol. 23, 921–932 (2016). This is an extensive analysis that refines the amino acid signature required for PDZ-binding motif recognition by SNX27, thereby revealing over 400 potential cargo proteins, and establishes that phosphorylation within the PDZ-binding motif may regulate cargo recognition.

    Article  CAS  PubMed  Google Scholar 

  75. Gallon, M. et al. A unique PDZ domain and arrestin-like fold interaction reveals mechanistic details of endocytic recycling by SNX27-retromer. Proc. Natl Acad. Sci. USA 111, E3604–E3613 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hussain, N. K., Diering, G. H., Sole, J., Anggono, V. & Huganir, Rl Sorting nexin 27 regulates basal and activity-dependent trafficking of AMPARs. Proc. Natl Acad. Sci. USA 111, 11840–11845 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Temkin, P. et al. The retromer supports AMPA receptor trafficking during LTP. Neuron 94, 74–82 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Florian, V., Schlüter, T. & Bohnensack, R. A new member of the sorting nexin family interacts with the C-terminus of P-selectin. Biochem. Biophys. Res. Commun. 281, 1045–1050 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Williams, R. et al. Sorting nexin 17 accelerates internalization yet retards degradation of P-selectin. Mol. Biol. Cell 15, 3095–3105 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. van Kerkhof, P. et al. Sorting nexin 17 facilitates LRP recycling in the early endosome. EMBO J. 24, 2851–2861 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Lee, J. Y. et al. Adaptor protein sorting nexin 17 regulates amyloid precursor protein trafficking and processing in the early endosomes. J. Biol. Chem. 283, 11501–11508 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bottcher, R. T. et al. Sorting nexin 17 prevents lysosomal degradation of β1 integrins by binding to the β1-integrin tail. Nat. Cell Biol. 14, 584–592 (2012).

    Article  PubMed  CAS  Google Scholar 

  83. Steinberg, F., Heesom, K. J., Bass, M. D. & Cullen, P. J. SNX17 protects integrins from degradation by sorting between lysosomal and recycling pathways. J. Cell Biol. 197, 219–230 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Koumandou, V. L. et al. Evolutionary resconstruction of the retromer complex and its function in Trypanosoma brucei. J. Cell Sci. 124, 1496–1509 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Aubry, L. & Klein, G. True arrestins and arrestin-fold proteins: a structure-based appraisal. Prog. Mol. Biol. Transl Sci. 118, 21–56 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Phillips-Krawczak, C. A. et al. COMMD1 is linked to the WASH complex and regulates endosomal trafficking of the copper transporter ATP7A. Mol. Biol. Cell 26, 91–103 (2015). By studying the role of COMMD1 in copper transport, this study identifies the CCC complex and establishes its role in the WASH-dependent transport of the copper transporter ATP7A, thereby providing new insight into copper homeostasis.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Wan, C. et al. Panorama of ancient metazoan macromolecular complexes. Nature 525, 339–344 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mallam, A. L. & Marcotte, E. M. Systems-wide studies uncover Commander, a multiprotein complex essential to human development. Cell Syst. 4, 483–494 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Burstein, E. et al. COMMD proteins, a novel family of structural and functional homologs of MURR1. J. Biol. Chem. 280, 22222–22232 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Sommerhalter, M., Zhang, Y. & Rosenzweig, A. C. Solution structure of the COMMD1 N-terminal domain. J. Mol. Biol. 365, 715–721 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Burkhead, J. L., Morgan, C. T., Shinde, U., Haddock, G. & Lutsenko, S. COMMD1 forms oligomeric complexes targeted to the endocytic membranes via specific interactions with phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 284, 696–707 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Starokadomskyy, P. et al. CCDC22 deficiency in humans blunts activation of proinflammatory NF-kB signaling. J. Clin. Invest. 123, 2244–2256 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Li, H. et al. Endosomal sorting of Notch receptors through COMMD9-dependent pathways modulates Notch signaling. J. Cell Biol. 211, 605–617 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bartuzi, P. et al. CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL. Nat. Commun. 7, 10961 (2016). Through establishing the importance of the CCC and WASH complexes in the endosomal retrieval and recycling of the LDL receptor, this study provides insight into the observed elevated plasma LDL cholesterol levels in patients carrying mutations in CCDC22 and strumpellin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bartuzi, P., Hofker, M. H. & van de Sluis, B. Tuning NF-kB activity: a touch of COMMD proteins. Biochim. Biophys. Acta 1832, 2315–2321 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Pavlos, N. J. & Friedman, P. A. GPCR signalling and trafficking: the long and short of it. Trends Endocrinol. Metab. 28, 213–226 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Irannejad, R. et al. Conformational biosensors reveal GPCR signalling from endosomes. Nature 495, 534–538 (2013). Using an elegant application of conformation-specific nanobodies, this study provides direct evidence that G protein-coupled receptor signalling occurs from endosomes in addition to the plasma membrane.

    Article  CAS  PubMed  Google Scholar 

  98. Tsvetanova, N. G. & von Zastrow, M. Spatial encoding of cyclic AMP signalling specificity by GPCR endocytosis. Nat. Chem. Biol. 10, 1061–1065 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bowman, S. L., Shiwarski, D. J. & Puthenveedu, M. A. Distinct G protein-coupled receptor recycling pathways allow spatial control of downstream G protein signalling. J. Cell Biol. 214, 797–806 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nobles, K. N. et al. Distinct phorphorylation sites on the β2-adrenergic receptor establish a barcode that encodes differential functions of β-arrestin. Sci. Signal. 4, ra51 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ioannou, M. S. et al. Intersectin-s interaction with DENND2B facilitates recycling of epidermal growth factor receptor. EMBO Rep. 18, 2119–2130 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Francavilla, C. et al. Multilayered proteomics reveals molecular switches dictating ligand-dependent EGFR trafficking. Nat. Struct. Mol. Biol. 23, 608–618 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Lenoir, M. et al. Phosphorylation of conserved phosphoinositide binding pocket regulates sorting nexin membrane targeting. Nat. Commun. 9, 993 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Cui, T. Z., Peterson, T. A. & Burd, C. G. A. CDC25 family protein phosphatase gates cargo recognition by the Vps26 retromer subunit. eLife 6, e24126 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Xiong, L. et al. Retromer in osteoblasts interacts with protein phosphatase 1 regulator subunit 14 C, terminates parathyroid hormone’s signaling, and promotes its catabolic cesponse. EBioMedicine 9, 45–60 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Chan, A. S. et al. Sorting nexin 27 couples PTHR trafficking to retromer for signal regulation in osteoblasts during bone growth. Mol. Biol. Cell 27, 1367–1382 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. McGarvey, J. C. et al. Actin-sorting nexin 27 (SNX27)-retromer complex mediated rapid parathyroid hormone receptor recycling. J. Biol. Chem. 291, 10986–11002 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chmiest, D. et al. Spatiotemporal control on interferon-induced JAK/STAT signaling and gene transcription by the retromer complex. Nat. Commun. 7, 13476 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Popoff, V. et al. Analysis of articulation between clathrin and retromer in retrograde sorting on early endosomes. Traffic 10, 1868–1880 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Strochlic, T. I., Schmiedekamp, B. C., Lee, J., Katzmann, D. J. & Burd, C. G. Opposing activities of the SNX3-retromer complex and ESCRT proteins mediate regulated cargo sorting at a common endosome. Mol. Biol. Cell 19, 4694–4706 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sonnichsen, B., De Renzis, S., Nielsen, E., Rietdorf, J. & Zerial, M. Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11. J. Cell Biol. 149, 901–914 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Murk, J. L. et al. Endosomal compartmentalization in three dimensions: implications for membrane fusion. Proc. Natl Acad. Sci. USA 100, 13332–13337 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gomez, T. S., Gorman, J. A., De Narvajas, A. A. M., Koenig, A. O. & Billadeau, D. D. Trafficking defects in WASH-knockout fibroblasts originate from collapsed endosomal and lysosomal networks. Mol. Biol. Cell 23, 3215–3228 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Derivery, E., Helfer, E., Henriot, V. & Gautreau, A. Actin polymerization controls the organization of WASH domains at the surface of endosomes. PLoS ONE 7, e39774 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Derivery, E. et al. The Arp2/3 activator WASH controls the fission of endosomes through a large multiprotein complex. Dev. Cell 17, 712–723 (2009). This study establishes a role for the WASH complex on endosomes and the localized formation of a branched actin network that is functionally required for endosomal tubule dynamics and fission during TfR recycling.

    Article  CAS  PubMed  Google Scholar 

  116. Gomez, T. S. & Billadeau, D. D. A. FAM21-containing WASH complex regulates retromer-dependent sorting. Dev. Cell 17, 699–711 (2009). Published alongside reference 115, this work independently identifies a role for the WASH complex in regulating endosomal actin dynamics, and, importantly, it provides the first evidence linking function of WASH with that of retromer in tubule-based cargo recycling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Jia, D. et al. WASH and WAVE actin regulators of the Wiskott-Aldrich syndrome protein (WASP) family are controlled by analogous structurally related complexes. Proc. Nat. Acad. Sci. USA. 107, 10442–10447 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Harbour, M. E. et al. The cargo-selective retromer complex is a recruiting hub for protein complexes that regulate endosomal tubule dynamics. J. Cell Sci. 123, 3703–3717 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Harbour, M. E., Breusegem, S. Y. & Seaman, M. N. J. Recruitment of the endosomal WASH complex is mediated by the extended ‘tail’ of Fam21 binding to the retromer protein Vps35. Biochem. J. 442, 209–220 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Hao, Y. H. et al. Regulation of WASH-dependent actin polymerization and protein trafficking by ubiquitination. Cell 152, 1051–1064 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hao, Y. H. et al. USP7 acts as a molecular rheostat to promote WASH-dependent endosomal protein recycling and is mutated in a human neurodevelopmental disorder. Mol. Cell 59, 956–969 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Alekhina, O., Burstein, E. & Billadeau, D. D. Cellular functions of WASP family proteins at a glance. J. Cell Sci. 130, 2235–2241 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Jia, D., Gomez, T. S., Billadeau, D. D. & Rosen, M. K. Multiple repeat elements within the FAM21 tail link the WASH actin regulatory complex to the retromer. Mol. Biol. Cell 23, 2352–2361 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lauffer, B. E. L. et al. Engineered protein connectivity to actin mimics PDZ-dependent recycling of G protein-coupled receptors but not its regulation by Hrs. J. Biol. Chem. 284, 2448–2458 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Braun, A. et al. EHD protein associate with syndapin I and II and such interactions play a crucial role in endosomal recycling. Mol. Biol. Cell 16, 3642–3658 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wang, Q. et al. Molecular mechanism of membrane constriction and tubulation mediated by the F-BAR protein Pacsin/Syndapin. Proc. Natl Acad. Sci. USA 106, 12700–12705 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Gleason, A. M., Nguyen, K. C., Hall, D. H. & Grant, B. D. Syndapin/SDPN-1 is required for endoyctic recycling and endosomal actin association in the C. elegans intestine. Mol. Biol. Cell 27, 3746–3756 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  128. Shinozaki-Narikawa, N., Kodama, T. & Shibasaki, Y. Cooperation of phosphoinositides and BAR domain proteins in endosomal tubulation. Traffic 7, 1539–1550 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Pang, X. et al. PH domain in ACAP1 possesses key features of the BAR domain in promoting membrane curvature. Dev. Cell 31, 73–86 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Carlton, J. et al. Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high-curvature membranes and 3-phosphoinositides. Curr. Biol. 14, 1791–1800 (2004). By defining the mechanistic basis by which SNX1 can induce the formation of endosomal tubules, this study provides the functional identification of the SNX–BAR family.

    Article  CAS  PubMed  Google Scholar 

  131. Traer, C. J. et al. SNX4 coordinates endosomal sorting of TfnR with dyenin-mediated transport into the endocytic recycling compartment. Nat. Cell Biol. 9, 1370–1380 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Wassmer, T. et al. The retromer coat complex coordinates endosomal sorting and dyenin-mediated transports with carrier recognition by the TGN. Dev. Cell 17, 110–122 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. van Weering, J. R., Verkade, P. & Cullen, P. J. SNX-BAR-mediated endosome tubulation is co-ordinated with endosome maturation. Traffic 13, 94–107 (2012).

    Article  PubMed  CAS  Google Scholar 

  134. van Weering, J. R. et al. Molecular basis for SNX-BAR-mediated assembly of distinct endosomal sorting tubules. EMBO J. 31, 4460–4480 (2012).

    Google Scholar 

  135. Peter, B. J. et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303, 495–499 (2004). This is the seminal study that, through a structural analysis of BAR domain of amphiphysin, establishes the mechanism by which it can sense and drive membrane curvature and allows the identification of the wider family of BAR domain-containing proteins.

    Article  CAS  PubMed  Google Scholar 

  136. Lo, W. T. et al. A coincidence detection mechanism controls PX-BAR domain-mediated endocytic membrane remodelling via and allosteric structural switch. Dev. Cell 43, 522–529 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Simunovic, M. et al. How curvature-generating proteins build scaffolds in membrane nanotubes. Proc. Natl Acad. Sci. USA 113, 11226–11231 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wassmer, T. et al. A loss-of-function screen reveals SNX5 and SNX6 as potential components of the mammalian retromer. J. Cell Sci. 120, 45–54 (2007).

    Article  CAS  PubMed  Google Scholar 

  139. Shi, A. et al. Regulation of endosomal clathrin and retromer-mediated endosome to Golgi retrograde transport by the J-domain protein RME-8. EMBO J. 28, 3290–3302 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Freeman, C. L., Hesketh, G. & Seaman, M. N. J. RME-8 coordinates the activity of the WASH complex with the function of the retromer SNX dimer to control endosomal tubulation. J. Cell Sci. 127, 2053–2070 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Norris, A. et al. SNX-1 and RME-8 oppose the assembly of HGRS-1/ESCRT-0 degradative microdomains on endosomes. Proc. Natl Acad. Sci. USA 114, E307–E316 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. van Weering, J. R. & Cullen, P. J. Membrane-associated cargo recycling by tubule-based endosomal sorting. Semin. Cell Dev. Biol. 31, 40–47 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Haberg, K., Lundmark, R. & Carlsson, S. R. SNX18 is an SNX9 paralog that acts as a membrane tubulator in AP-1 positive endosomal trafficking. J. Cell Sci. 121, 1495–1505 (2008).

    Article  CAS  PubMed  Google Scholar 

  144. Knævelsrud, H. et al. Membrane remodelling by the PX-BAR protein SNX18 promotes autophagosome formation. J. Cell Biol. 202, 331–349 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Søreng, K. et al. SNX18 regulates ATG9A trafficking from recycling endosome by recruiting dynamin-2. EMBO Rep. e44837 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Grant, B. et al. Evidence that RME-1, a conserved C. elegans EH-domain proteins, functions in endocytic recycling. Nat. Cell Biol. 3, 573–579 (2001). Through forward and reverse genetic screens, this study identifies RME1 as a conserved member of the EHD family and proposes that these proteins function in endocytic recycling.

    Article  CAS  PubMed  Google Scholar 

  147. Lin, S. X., Grant, B., Hirsch, D. & Maxfield, F. R. Rme-1 regulates the distribution and function of the endocytic recycling compartment in mammalian cells. Nat. Cell Biol. 3, 567–572 (2001).

    Article  CAS  PubMed  Google Scholar 

  148. Sharma, M., Giridharan, S. S., Rahajeng, J., Naslavsky, N. & Caplan, S. MICAL-L1 links EHD1 to tubular recycling endosomes and regulates receptor recycling. Mol. Biol. Cell 20, 5181–5194 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Pant, S. et al. AMPH-1/Amphiphysin/Bin1 functions with RME-1/Ehd1 in endocytic recycling. Nat. Cell Biol. 11, 1399–1410 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Giridharan, S. S., Cai, B., Vitale, N., Naslavsky, N. & Caplan, S. Cooperation of MICAL-L1, syndapinII, and phosphatidic acid in tubular recycling endosome biogenesis. Mol. Biol. Cell 24, 1776–1790 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Gokool, S., Tattersall, D. & Seaman, M. N. EHD1 interacts with retromer to stabilise SNX1 tubules and facilitate endosome-to-Golgi retrieval. Traffic 8, 1873–1886 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Zhang, J. et al. Rabankyrin-5 interacts with EHD1 and VPS26 to regulate endocytic trafficking and retromer function. Traffic 13, 745–757 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. McKenzie, J. E. et al. Retromer guides STxB and CD8-M6PR from early to recycling endosomes, EHD1 guides STxB from recycling endosome to Golgi. Traffic 13, 1140–1159 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Bai, Z. & Grant, B. D. A. TOCA/CDC-42/PAR/WAVE functional module required for retrograde endocytic recycling. Proc. Natl Acad. Sci. USA 112, E1443–E1452 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Li, J. et al. An ACAP1-containing clathrin coat complex for endocytic recycling. J. Cell Biol. 178, 453–464 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Delevoye, C. et al. Recycling endosome tubule morphogenesis from sorting endosomes requires the kinesin motor KIF13A. Cell Rep. 6, 445–454 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Delevoye, C. et al. BLOC-1 brings together the actin and microtubule cytoskeletons to generate recycling endosomes. Curr. Biol. 26, 1–13 (2016).

    Article  CAS  PubMed  Google Scholar 

  158. Wang, P. et al. RAB-10 promotes EHBP-1 bridging of filamentous actin and tubular recycling endosomes. PLoS Genet. 12, e1006093 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Anitei, M. & Hoflack, B. Bridging membrane and cytoskeleton dynamics in the secretory and endocytic pathways. Nat. Cell Biol. 14, 11–19 (2011).

    Article  PubMed  CAS  Google Scholar 

  160. Rowland, A. A., Chitwood, P. J., Phillips, M. J. & Voeltz, G. K. ER contact sites define the position and timing of endosome fission. Cell 159, 1027–1041 (2014). Using imaging procedures, this study made the observation that stable contacts are formed between ER tubules and endosomes (labelled with FAM21) and that these contacts restrict cargo diffusion and are temporally coordinated with the process of transport carrier fission from the endosome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Dong, R. et al. Endosome-ER contacts control actin nucleation and retromer function through VAP-dependent regulation of PI4P. Cell 166, 408–423 (2016). This study reveals that the ER-associated VAP proteins associate with the endosomal SNX–BAR protein SNX2 to form contacts that regulate retromer–WASH-dependent budding events by controlling the level of endosomal phosphatidylinositol 4-phosphate (PtdIns(4)P).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Allison, R. et al. Defects in ER-endosome contacts impact lysosome function in hereditary spastic paraplegia. J. Cell Biol. 216, 1337–1355 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Skjeldal, F. M. et al. The fusion of early endosomes induces molecular-motor-driven tubule formation and fission. J. Cell Sci. 125, 1910–1919 (2012).

    Article  CAS  PubMed  Google Scholar 

  164. Hunt, S. D., Townley, A. K., Danson, C. M., Cullen, P. J. & Stephens, D. J. Microtubule motors mediate endosomal sorting by maintaining functional domain organization. J. Cell Sci. 126, 2493–2501 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Daumke, O. et al. Architectural and mechanistic insight into an EHD ATPase involved in membrane remodelling. Nature 449, 923–927 (2007).

    Article  CAS  PubMed  Google Scholar 

  166. Melo, A. A. et al. Structural insights into the activation mechanism of dynamin-like EHD ATPases. Proc. Natl Acad. Sci. USA 114, 5629–5634 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Qualmann, B., Roos, J., DiGregorio, P. J. & Kelly, R. B. Syndapin I, a synaptic dynamin-binding protein that associates with the neural Wiskott-Aldrich syndrome protein. Mol. Biol. Cell 10, 501–513 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Simunovic, M. et al. Friction mediates scission of tubular membranes scaffolded by BAR proteins. Cell 170, 172–184 (2017). This elegant work proposes a biophysical model for membrane scission that evokes a requirement for the generation of frictional forces between lipids and BAR domain coats as membrane tubules are elongated.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Li, J. et al. Phosphorylation of ACAP1 by Akt regulates the stimulation-dependent recycling of integrin β1 to control cell migration. Dev. Cell 9, 663–673 (2005).

    Article  CAS  PubMed  Google Scholar 

  170. Bai, M. et al. Mechanistic insights into regulated cargo binding by ACAP1 protein. J. Biol. Chem. 287, 28675–28685 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Jimenez-Orgaz, A. et al. Control of RAB7 activity and localisation through the retromer-TBC1D5 complex enables RAB7-dependent mitophagy. EMBO J. 37, 235–254 (2018).

    Article  CAS  PubMed  Google Scholar 

  172. Hesketh, G. G. et al. VARP is recruited on to endosomes by direct interaction with retromer, where together they function in export to the cell surface. Dev. Cell 29, 591–606 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. McGough, I. J. et al. Identification of molecular heterogeneity in SNX27-retromer-mediated endosome-to-plasma membrane recycling. J. Cell Sci. 127, 4940–4953 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Coudreuse, D. Y., Roel, G., Betist, M. C., Destree, O. & Korswagen, H. C. Wnt gradient formation requires retromer function in Wnt-producing cells. Science 312, 921–924 (2006).

    Article  CAS  PubMed  Google Scholar 

  175. Prasad, B. C. & Clark, S. G. Wnt signalling establishes anteroposterior neuronal polarity and requires retromer in C. elegans. Development 133, 1757–1766 (2006). Together with reference 174, this work establishes that the ability of Wnt morphogens to regulate developmental patterning requires an evolutionarily conserved function for retromer in the Wnt-secreting cells.

    Article  CAS  PubMed  Google Scholar 

  176. Belenkaya, T. Y. et al. The retromer complex influences Wnt secretion by recycling wntless from endosomes to the trans-Golgi network. Dev. Cell 14, 120–131 (2008).

    Article  CAS  PubMed  Google Scholar 

  177. Pan, C. L. et al. C. elegans AP-2 and retromer control Wnt signalling by regulating mig-14/Wntless. Dev. Cell 14, 132–139 (2008).

    Article  CAS  PubMed  Google Scholar 

  178. Port, F. et al. Wingless secretion promotes and requires retromer-dependent cycling of Wntless. Nat. Cell Biol. 10, 178–185 (2008).

    Article  CAS  PubMed  Google Scholar 

  179. Yang, P. T. et al. Wnt signalling requires retromer-dependent recycling of MIG-14/Wntless in Wnt-producing cells. Dev. Cell 14, 140–147 (2008). Studies in references 176–179 establish that the function of retromer in regulating Wnt secretion stems from its role in orchestrating the endosomal retrieval and recycling of Wntless, an integral membrane chaperone that assists in trafficking and secretion of Wnt morphogens.

    Article  CAS  PubMed  Google Scholar 

  180. Langton, P. F., Kakugawa, S. & Vincent, J. P. Making, exporting, and modulating Wnts. Trends Cell Biol. 26, 756–765.

    Article  CAS  PubMed  Google Scholar 

  181. Pocha, S. M., Wassmer, T., Niehage, C., Hoflack, B. & Knust, E. Retromer controls epithelial cell polarity by trafficking the apical determinant Crumbs. Curr. Biol. 21, 1111–1117 (2011).

    Article  CAS  PubMed  Google Scholar 

  182. de Vreede, G. et al. The scribble module regulates retromer-dependent endocytic trafficking during epithelial polarization. Development 141, 2796–2802 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Dong, B., Kakihara, K., Otani, T., Wada, H. & Hayashi, S. Rab9 and retromer regulate retrograde trafficking of luminal protein required for epithelial tube length control. Nat. Commun. 4, 1358 (2013).

    Article  PubMed  CAS  Google Scholar 

  184. Wang, S. et al. The retromer complex is required for rhodopsin recycling and its loss leads to photoreceptor degeneration. PLoS Biol. 12, e1001847 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Korolchuk, V. I. et al. Drosophila Vps35 function is necessary for normal endocytic trafficking and actin cytoskeleton organisation. J. Cell Sci. 120, 4367–4376 (2007).

    Article  CAS  PubMed  Google Scholar 

  186. Zhou, B. et al. Retromer promotes immune quiescence by suppressing Spatzle-Toll pathway in Drosophila. J. Cell. Physiol. 229, 512–520 (2014).

    Article  CAS  PubMed  Google Scholar 

  187. Gomez-Lamarca, M. J., Snowdon, L. A., Seib, E., Klein, T. & Bray, S. J. Rme-8 depletion perturbs Notch recycling and predisposes to pathogenic signalling. J. Cell Biol. 210, 303–318 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Zhang, D. et al. RAB-6.2 and the retromer regulate glutamate receptor recycling through a retrograde pathway. J. Cell Biol. 196, 85–101 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Gleason, R. J., Akintobi, A. M., Grant, B. D. & Padgett, R. W. BMP signalling requires retromer-dependent recycling of the type I receptor. Proc. Natl Acad. Sci. USA 111, 2578–2583 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Oikonomou, G., Perens, E. A., Lu, Y. & Shaham, S. Some, but not all, retromer components promote morphogenesis of C. elegans sensory compartments. Dev. Biol. 362, 42–49 (2012).

    Article  CAS  PubMed  Google Scholar 

  191. Martinez-Velazquez, L. A. & Ringstad, N. Antagonsitic regulation of trafficking to C. elegans sensory cilia by a retinal degeneration 3 homolog and retromer. Proc. Natl Acad. Sci. USA 1 15, E438–E447 (2018).

    Article  CAS  Google Scholar 

  192. Nagel, B. M., Bechtold, M., Rodriguez, L. G. & Bogdan, S. Drosophila WASH is required for integrin-mediated cell adhesion, cell motility and lysosomal neutralization. J. Cell Sci. 130, 344–359 (2017).

    Article  CAS  PubMed  Google Scholar 

  193. Kim, E. et al. Implication of mouse Vps26b-Vps29-Vps35 retromer complex in sortilin trafficking. Biochem. Bophys. Res. Commun. 403, 167–171 (2010).

    Article  CAS  Google Scholar 

  194. Radice, G., Lee, J. J. & Costantini, F. H beta 58, an insertional mutation affecting early postimplantation development of the mouse embryo. Development 111, 801–811 (1991).

    CAS  PubMed  Google Scholar 

  195. Xia, P. et al. WASH inhibits autophagy through suppression of Beclin 1 ubiquitination. EMBO J. 32, 2685–2696 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Jahic, A. et al. The spectrum of KIAA0196 variants, and characterisation of a murine knockout: implications for the mutational mechanism of hereditary spastic paraplegia type SPG8. Orphanet. J. Rare Dis. 10, 147 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Wen, L. et al. VPS35 haploinsufficiency increases Alzheimer’s disease neuropathology. J. Cell Biol. 195, 765–779 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Tang, F. L. et al. VPS35 in dopamine neurons is required for endosome-to-Golgi retrieval of Lamp2a, a receptor of chaperone-mediated autophagy that is critical for α-synuclein degradation and prevention of pathogenesis of Parkinson’s disease. J. Neurosci. 35, 10613–10628 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Cai, L., Loo, L. S., Atlashkin, V., Hanson, B. J. & Hong, W. Deficiency of sorting nexin 27 (SNX27) leads to growth retardation and elevated levels of N-methyl-D-aspartate receptor 2C (NR2C). Mol. Cell. Biol. 31, 1734–1747 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Wang, X. et al. Loss of sorting nexin 27 contributes to excitatory synaptic dysfunction by modulating glutamate receptor recycling in Down’s syndrome. Nat. Med. 19, 473–480 (2013). This study identifies and describes the mechanism causing decreased expression of SNX27 in the brains of individuals with Down syndrome, which leads to synaptic dysfunction through perturbed NMDA and AMPA receptor trafficking. This study shows that, intriguingly, upregulating SNX27 expression in the hippocampus of Down syndrome mice rescues synaptic and cognitive function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Wang, X. et al. SNX27 deletion causes hydrocephalus by impairing ependymal cell differentiation and ciliogenesis. J. Neurosci. 36, 12586–12597 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. McMillan, K. J., Korswagen, H. C. & Cullen, P. J. The emerging role of retromer in neuroprotection. Curr. Opin. Cell Biol. 47, 72–82 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Cui, Y., Yang, Z. & Teasdale, R. D. The functional roles of retromer in Parkinson’s disease. FEBS Lett. 592, 1096–1112 (2017).

    Article  PubMed  CAS  Google Scholar 

  204. Vilariño-Güell, C. et al. VPS35 mutations in Parkinson disease. Am. J. Hum. Genet. 89, 162–167 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Zimprich, A. et al. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am. J. Hum. Genet. 89, 168–175 (2011). Together with reference 204, this study provides the first evidence that mutations in retromer, specifically the VPS35(p. D620N) mutation, are associated with late-onset Parkinson disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Zavodszky, E. et al. Mutation in VPS35 associated with Parkinson’s disease impairs WASH complex association and inhibits autophagy. Nat. Commun. 5, 3828 (2014).

    Article  CAS  PubMed  Google Scholar 

  207. McGough, I. J. et al. Retromer binding to FAM21 and the WASH complex is perturbed by the Parkinson disease-linked VPS35(D620N) mutation. Curr. Biol. 24, 1670–1676 (2014). Together with reference 206, this study establishes that the Parkinson disease-associated VPS35(p. D620N) mutation displays a subtly reduced ability to associate with the FAM21 component of the WASH complex and that this leads to defects in retromer-mediated cargo recycling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Vilariño-Güell, C. et al. DNAJC13 mutations in Parkinson disease. Hum. Mol. Genet. 23, 1794–1801 (2014).

    Article  PubMed  CAS  Google Scholar 

  209. Yoshida, S. et al. Parkinson’s diease-linked DNAJC13 mutation aggravates α-synuclein-induced neurotoxicity through perturbation of endosomal trafficking. Hum. Mol. Genet. 27, 823–836 (2018).

    Article  PubMed  Google Scholar 

  210. MacLeod, D. A. et al. RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson’s disease risk. Neuron 77, 425–439 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Alessi, D. R. & Sammler, E. LRRK2 kinase in Parkinson’s disease. Science 360, 36–37 (2018).

    Article  CAS  PubMed  Google Scholar 

  212. Song, P., Trajkovic, K., Tsunemi, T. & Krainc, D. Parkin modulates endosomal organisation and function of the endo-lysosomal pathway. J. Neurosci. 36, 2425–2437 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Hirst, J., Itzhak, D. N., Antrobus, R., Borner, G. H. H. & Robinson, M. S. Role of the AP-5 adaptor protein complex in late endosome-to-Golgi retrieval. PLoS Biol. 16, e2004411 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Small, S. A. et al. Model-guided microarray implicates the retromer complex in Alzhimer’s disease. Ann. Neurol. 58, 909–919 (2005). This is the first study to implicate the deregulation of retromer in Alzheimer disease.

    Article  CAS  PubMed  Google Scholar 

  215. Small, S. A., Simoes-Spassov, S., Mayeux, R. & Petsko, G. A. Endosomal traffic jams represent a pathogenic hub and therapeutic target in Alzheimer’s disease. Trends Neurosci. 40, 592–602 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Yin, J. et al. Vps35-dependent recycling of Trem2 regulates microglial function. Traffic 17, 1286–1296 (2016).

    Article  CAS  PubMed  Google Scholar 

  217. Loo, L. S., Tang, N., Al-Haddawi, M., Dawe, G. S. & Hong, W. A role for sorting nexin 27 in AMPA receptor trafficking. Nat. Commun. 5, 3176 (2014).

    Article  PubMed  CAS  Google Scholar 

  218. Damseh, N. et al. A defect in the retromer accessory protein, SNX27, manifests by infantile myoclonic epilepsy and neurodegeneration. Neurogenetics 16, 215–221 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Hsiao, J. C. et al. Intracellular transport of vaccina virus in HeLa cells requires WASH-VPEF/FAM21-retromer complexes and recycling molecules Rab11 and Rab22. J. Virol. 89, 8365–8382 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Groppelli, E., Len, A. C., Granger, L. A. & Jolly, C. Retromer regulates HIV-1 envelope glycoprotein trafficking and incorporation into virions. PLoS Pathog. 10, e1004518 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Ganti, K. et al. Interaction of the human papillomavirus E6 oncoprotein with sorting nexin 27 modulates endocytic cargo transport pathways. PLoS Pathog. 12, e1005854 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Pim, D., Broniarczyk, J., Bergant, M., Playford, M. P. & Banks, L. A novel PDZ domain interaction mediates the binding between human papillomavirus 16 L2 and sorting nexin 27 and modulates virion trafficking. J. Virol. 89, 10145–10155 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Yin, P., Hong, Z., Yang, X., Chung, R. T. & Zhang, L. A role for retromer in hepatitis C virus replication. Cell. Mol. Life Sci. 73, 869–881 (2016).

    Article  CAS  PubMed  Google Scholar 

  224. Bhowmick, S., Chakravarty, C., Sellathamby, S. & Lal, S. K. The influenza A virus matrix protein 2 undergoes retrograde transport from the endoplasmic reticulum into the cytoplasm and bypasses cytoplasmic proteasomal degradation. Arch. Virol. 162, 919–929 (2017).

    Article  CAS  PubMed  Google Scholar 

  225. Mirrashidi, K. M. et al. Global mapping of the Inc-human interactome reveals that retromer restricts Chlamydia infection. Cell Host Microbe 18, 109–121 (2015). This is a very elegant, unbiased proteomic analysis that, by identifying human proteins targeted by inclusion membrane proteins (Incs) secreted by Chlamydia trachomatis, reveals the retromer-associated SNX–BAR proteins SNX5 and SNX6 as targets for IncE, leading to the discovery that retromer serves to restrict bacterial infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Paul, B. et al. Structural basis for the hijacking of endosomal sorting nexin protein by Chlamydia trachomatis. eLife 6, e22311 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Elwell, C. A. et al. Chlamydia interfere with an interaction between the mannose-6-phosphate receptor and sorting nexins to counteract host restriction. eLife 6, e22709 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Finsel, I. et al. The Legionella effector RidL inhibits retrograde trafficking to promote intracellular replication. Cell Host Microbe 14, 38–50 (2013).

    Article  CAS  PubMed  Google Scholar 

  229. Bärlocher, K. et al. Structural insights into Legionella RidL-Vps29 retromer subunit interaction reveals displacement of the regulator TBC1D5. Nat. Commun. 8, 1543 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  230. McDonough, J. A. et al. Host pathways important for Coxiella burnetii infection revealed by genome-wide RNA interference screening. mBio 4, e00606–00612 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Scharaw, S. et al. The endosomal transcriptional regulator RNF11 integrates degradation and transport of EGFR. J. Cell Biol. 215, 543–558 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Schmidt, O. & Teis, D. The ESCRT machinery. Curr. Biol. 22, R116–R120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Fjorback, A. W. et al. Retromer binds the FANSHY sorting motif in SorLA to regulate amyloid precursor protein sorting and processing. J. Neurosci. 32, 1467–1480 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Knauth, P. et al. Functions of sorting nexin 17 domains and recognition motif for P-selectin trafficking. J. Mol. Biol. 347, 813–825 (2005).

    Article  CAS  PubMed  Google Scholar 

  235. Joubert, L. et al. New sorting nexin (SNX27) and NHERF specifically interact with the 5-HT4a receptor splice variant: role in receptor targeting. J. Cell Sci. 117, 5367–5379 (2004).

    Article  CAS  PubMed  Google Scholar 

  236. Jones, B. G. et al. Intracellular trafficking of furin is modulated by the phosphorylation state of a casein kinase II site in its cytoplasmic tail. EMBO J. 14, 5869–5883 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Wan, L. et al. PACS-1 defines a novel gene family of cytosolic sorting proteins required for trans-Golgi network localisation. Cell 94, 205–216 (1998).

    Article  CAS  PubMed  Google Scholar 

  238. Kottgen, M. et al. Trafficking of TRPP2 by PACS proteins respresents a novel mechanism of ion channel regulation. EMBO J. 24, 705–716 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  239. Sitaram, A. et al. Differential recognition of a dileucine-based sorting signal by AP-1 and AP-3 reveals a requirement for both BLOC-1 and AP-3 in delivery of OCA2 to melanosomes. Mol. Biol. Cell 23, 3178–3192 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Miller, S. E., Collins, B. M., McCoy, A. J., Robinson, M. S. & Owen, D. J. A. SNARE-adaptor interaction is a new mode of cargo recognition in clathrin-coated vesicles. Nature 450, 570–574 (2007).

    Article  CAS  PubMed  Google Scholar 

  241. Toh, W. H., Chia, P. Z. C., Hossain, M. I. & Gleeson, P. A. GGA1 regulates signal-dependent sorting of BACE1 to recycling endosomes, which moderates Aβ production. Mol. Biol. Cell 29, 191–208 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Li, X., Lavigne, P. & Lavoie, C. GGA3 mediates TrkA endocytic recycling to promote sustained Akt phosphorylation and cell survival. Mol. Biol. Cell 26, 4412–4426 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Bonifacino, J. S. Adaptor proteins involved in polarized sorting. J. Cell Biol. 204, 7–17 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are extremely grateful to their laboratory colleagues and to M. Babst, S. Caplan, J. Carlton, B. Collins, J. Gruenberg, M. Puthenveedu, A. Roux, M. v. Zastrow and M. Zerial for many thoughtful discussions. P.J.C. is supported by the Wellcome Trust (104568/Z/14/Z), the Medical Research Council (MR/P018807/1) and the Lister Institute. F.S. is supported by an Emmy Noether Fellowship of the Deutsche Forschungsgemeionschaft (DFG).

Reviewer information

Nature Reviews Molecular Cell Biology thanks V. Hsu and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, contributed to discussion of the content, wrote the article and edited the manuscript.

Corresponding authors

Correspondence to Peter J. Cullen or Florian Steinberg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Intraluminal vesicles

(ILVs). Small, cargo-enriched vesicles within the lumen of a maturing late endosome.

Endosomal sorting complexes required for transport

(ESCRT). Protein complexes that mediate the sorting of ubiquitylated cargo into intraluminal vesicles for degradation in lysosomes.

Sorting motifs

Usually unstructured linear peptide sequences present in the cytoplasmic tail of cargo proteins that, by engaging coat complexes, control the sorting of said cargo through intracellular membrane trafficking.

Sorting nexin (SNX) family

A large and diverse family of endosome-localized, peripheral membrane proteins defined by the presence of a PX domain.

β-Amyloid precursor protein

(APP). An integral membrane protein highly expressed in neuronal synapses. Proteolytic cleavage of APP generates the toxic β-amyloid polypeptide that contributes to Alzheimer disease.

Amphid sensory organ

The principal olfactory organ of nematodes.

Haemocyte

A cell of the haemolymph in invertebrates.

Amyloids

Protein aggregates that can form fibrils, often associated with neurodegenerative diseases, such as Alzheimer disease.

Macroautophagy

A degradative pathway in which a nutrient-starved cell sequesters cytoplasmic content into double membraned vesicles for lysosomal degradation.

Chaperone-mediated autophagy

A specialized form of autophagy in which chaperone proteins directly shuttle cytosolic proteins into the lysosomal lumen through lysosome-associated membrane glycoprotein 2 (LAMP2A)-mediated channels.

Wiskott–Aldrich syndrome and SCAR homologue (WASH) complex

Pentameric multiprotein complex that generates branched actin networks on the endosomal membrane.

BAR (Bin–Amphiphysin–Rvs) domain

A frequently occurring protein domain with α-helical coiled coils. The domains can dimerize to form a banana-shaped structure. Oligomerization of BAR domains can deform cellular membranes.

Hereditary spastic paraplegia

(HSP). A group of inheritable diseases characterized by progressive gait disorders due to dysfunction of motor neurons in the spinal cord.

Microglia

Macrophage-related immune cells of the central nervous system.

Eps15 homology domain (EHD) family

A family of four proteins (EHD1–EHD4) that possess structural similarities to dynamin and function in intracellular trafficking.

F-BAR domain

(FCH-homology BAR domain). A BAR domain found in proteins that couple membrane remodelling with actin dynamics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cullen, P.J., Steinberg, F. To degrade or not to degrade: mechanisms and significance of endocytic recycling. Nat Rev Mol Cell Biol 19, 679–696 (2018). https://doi.org/10.1038/s41580-018-0053-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-018-0053-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing