Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

LIM-kinase 2, a regulator of actin dynamics, is involved in mitotic spindle integrity and sensitivity to microtubule-destabilizing drugs

Abstract

LIM-kinase 2 (LIMK2) belongs to the LIMK family of proteins, which comprises LIMK1 and LIMK2. Both proteins regulate actin polymerization through phosphorylation and inactivation of the actin depolymerizing factor cofilin. In this study, we show that the level of LIMK2 protein is increased in neuroblastoma, BE(2)-C cells, selected for resistance to microtubule-destabilizing agents, vincristine and colchicine. However, the level of phosphorylated LIMK1 and LIMK2 was similar in the resistant and parental BE(2)-C cells. In contrast, the level of phospho-cofilin was greatly increased in the drug-resistant cells. Downregulation of LIMK2 expression increases sensitivity of neuroblastoma SH–EP cells to vincristine and vinblastine but not to microtubule-stabilizing agents, while it's overexpression increased its resistance to vincristine. Its vincristine-induced mitotic arrest was moderately inhibited in the LIMK2 knockdown cells, suggesting that the increased drug sensitivity is through an alternative mechanism other then mitotic arrest and apoptosis. Moreover, downregulation of LIMK2 expression induces formation of abnormal mitotic spindles, an effect enhanced in the presence of microtubule-destabilizing agents. LIMK2 is important for normal mitotic spindle formation and altered LIMK2 expression mediates sensitivity to microtubule destabilizing agents. These findings suggest that inhibition of LIMK2 activity may be used for the treatment of tumors resistant to microtubule-destabilizing drugs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Acevedo K, Li R, Soo P, Suryadinata R, Sarcevic B, Valova VA et al. (2007). The phosphorylation of p25/TPPP by LIM kinase 1 inhibits its ability to assemble microtubules. Exp Cell Res 313: 4091–4106.

    Article  CAS  PubMed  Google Scholar 

  • Acevedo K, Moussi N, Li R, Soo P, Bernard O . (2006). LIM kinase 2 is widely expressed in all tissues. J Histochem Cytochem 54: 487–501.

    Article  CAS  PubMed  Google Scholar 

  • Amano T, Tanabe K, Eto T, Narumiya S, Mizuno K . (2001). LIM-kinase 2 induces formation of stress fibres, focal adhesions and membrane blebs, dependent on its activation by Rho-associated kinase-catalysed phosphorylation at threonine-505. Biochem J 354: 149–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ambach A, Saunus J, Konstandin M, Wesselborg S, Meuer SC, Samstag Y . (2000). The serine phosphatases PP1 and PP2A associate with and activate the actin-binding protein cofilin in human T lymphocytes. Eur J Immunol 30: 3422–3431.

    Article  CAS  PubMed  Google Scholar 

  • Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon CA, Bernard O et al. (1998). Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393: 805–809.

    Article  CAS  PubMed  Google Scholar 

  • Bhalla KN . (2003). Microtubule-targeted anticancer agents and apoptosis. Oncogene 22: 9075–9086.

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti R, Jones JL, Oelschlager DK, Tapia T, Tousson A, Grizzle WE . (2007). Phosphorylated LIM kinases colocalize with gamma-tubulin in centrosomes during early stages of mitosis. Cell Cycle 6: 2944–2952.

    Article  CAS  PubMed  Google Scholar 

  • Croft DR, Olson MF . (2006). The Rho GTPase effector ROCK regulates cyclin A, cyclin D1, and p27Kip1 levels by distinct mechanisms. Mol Cell Biol 26: 4612–4627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dan C, Kelly A, Bernard O, Minden A . (2001). Cytoskeletal changes regulated by the PAK4 serine/threonine kinase are mediated by LIM kinase 1 and cofilin. J Biol Chem 276: 32115–32121.

    Article  CAS  PubMed  Google Scholar 

  • Dan S, Tsunoda T, Kitahara O, Yanagawa R, Zembutsu H, Katagiri T et al. (2002). An integrated database of chemosensitivity to 55 anticancer drugs and gene expression profiles of 39 human cancer cell lines. Cancer Res 62: 1139–1147.

    CAS  PubMed  Google Scholar 

  • Davila M, Jhala D, Ghosh D, Grizzle WE, Chakrabarti R . (2007). Expression of LIM kinase 1 is associated with reversible G1/S phase arrest, chromosomal instability and prostate cancer. Mol Cancer 6: 40.

    Article  PubMed  PubMed Central  Google Scholar 

  • Deschesnes RG, Patenaude A, Rousseau JLC, Fortin JS, Ricard C, Cote M-F et al. (2007). Microtubule-destabilizing agents induce focal adhesion structure disorganization and anoikis in cancer cells. J Pharmacol Exp Ther 320: 853–864.

    Article  CAS  PubMed  Google Scholar 

  • Don S, Verrills NM, Liaw TY, Liu ML, Norris MD, Haber M et al. (2004). Neuronal-associated microtubule proteins class III beta-tubulin and MAP2c in neuroblastoma: role in resistance to microtubule-targeted drugs. Mol Cancer Ther 3: 1137–1146.

    Article  CAS  PubMed  Google Scholar 

  • Edwards DC, Sanders LC, Bokoch GM, Gill GN . (1999). Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol 1: 253–259.

    Article  CAS  PubMed  Google Scholar 

  • Eiseler T, Doppler H, Yan IK, Kitatani K, Mizuno K, Storz P . (2009). Protein kinase D1 regulates cofilin-mediated F-actin reorganization and cell motility through slingshot. Nat Cell Biol 11: 545–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gohla A, Birkenfeld J, Bokoch GM . (2005). Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics. Nat Cell Biol 7: 21–29.

    Article  CAS  PubMed  Google Scholar 

  • Gorovoy M, Niu J, Bernard O, Profirovic J, Minshall R, Neamu R et al. (2005). LIM kinase 1 coordinates microtubule stability and actin polymerization in human endothelial cells. J Biol Chem 280: 26533–26542.

    Article  CAS  PubMed  Google Scholar 

  • Groth-Pedersen L, Ostenfeld MS, Hoyer-Hansen M, Nylandsted J, Jaattela M . (2007). Vincristine induces dramatic lysosomal changes and sensitizes cancer cells to lysosome-destabilizing siramesine. Cancer Res 67: 2217–2225.

    Article  CAS  PubMed  Google Scholar 

  • Jordan MA, Thrower D, Wilson L . (1991). Mechanism of inhibition of cell proliferation by vinca alkaloids. Cancer Res 51: 2212–2222.

    CAS  PubMed  Google Scholar 

  • Kaji N, Muramoto A, Mizuno K . (2008). LIM kinase-mediated cofilin phosphorylation during mitosis is required for precise spindle positioning. J Biol Chem 283: 4983–4992.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Nishita M, Mishima T, Ohashi K, Mizuno K . (2006). MAPKAPK-2-mediated LIM-kinase activation is critical for VEGF-induced actin remodeling and cell migration. Embo J 25: 713–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaQuaglia MP, Kopp EB, Spengler BA, Meyers MB, Biedler JL . (1991). Multidrug resistance in human neuroblastoma cells. J Pediatr Surg 26: 1107–1112.

    Article  CAS  PubMed  Google Scholar 

  • Mizuno K, Okano I, Ohashi K, Nunoue K, Kuma K, Miyata T et al. (1994). Identification of a human cDNA encoding a novel protein kinase with two repeats of the LIM/double zinc finger motif. Oncogene 9: 1605–1612.

    CAS  PubMed  Google Scholar 

  • Niwa R, Nagata-Ohashi K, Takeichi M, Mizuno K, Uemura T . (2002). Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 108: 233–246.

    Article  CAS  PubMed  Google Scholar 

  • Nunoue K, Ohashi K, Okano I, Mizuno K . (1995). LIMK-1 and LIMK-2, two members of a LIM motif-containing protein kinase family. Oncogene 11: 701–710.

    CAS  PubMed  Google Scholar 

  • Okano I, Hiraoka J, Otera H, Nunoue K, Ohashi K, Iwashita S et al. (1995). Identification and characterization of a novel family of serine/threonine kinases containing two N-terminal LIM motifs. J Biol Chem 270: 31321–31330.

    Article  CAS  PubMed  Google Scholar 

  • Peterburs P, Heering J, Link G, Pfizenmaier K, Olayioye MA, Hausser A . (2009). Protein kinase D regulates cell migration by direct phosphorylation of the cofilin phosphatase slingshot 1 like. Cancer Res 69: 5634–5638.

    Article  CAS  PubMed  Google Scholar 

  • Sarmiere PD, Bamburg JR . (2004). Regulation of the neuronal actin cytoskeleton by ADF/cofilin. J Neurobiol 58: 103–117.

    Article  CAS  PubMed  Google Scholar 

  • Soosairajah J, Maiti S, Wiggan O, Sarmiere P, Moussi N, Sarcevic B et al. (2005). Interplay between components of a novel LIM kinase-slingshot phosphatase complex regulates cofilin. Embo J 24: 473–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sumi T, Hashigasako A, Matsumoto K, Nakamura T . (2006). Different activity regulation and subcellular localization of LIMK1 and LIMK2 during cell cycle transition. Exp Cell Res 312: 1021–1030.

    Article  CAS  PubMed  Google Scholar 

  • Sumi T, Matsumoto K, Nakamura T . (2001). Specific activation of LIM kinase 2 via phosphorylation of threonine 505 by ROCK, a Rho-dependent protein kinase. J Biol Chem 276: 670–676.

    Article  CAS  PubMed  Google Scholar 

  • Sumi T, Matsumoto K, Takai Y, Nakamura T . (1999). Cofilin phosphorylation and actin cytoskeletal dynamics regulated by rho- and Cdc42-activated LIM-kinase 2. J Cell Biol 147: 1519–1532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verrills NM, Flemming CL, Liu M, Ivery MT, Cobon GS, Norris MD et al. (2003). Microtubule alterations and mutations induced by desoxyepothilone B: implications for drug-target interactions. Chem Biol 10: 597–607.

    Article  CAS  PubMed  Google Scholar 

  • Verrills NM, Kavallaris M . (2005). Improving the targeting of tubulin-binding agents: lessons from drug resistance studies. Curr Pharm Des 11: 1719–1733.

    Article  CAS  PubMed  Google Scholar 

  • Verrills NM, Liem NL, Liaw TY, Hood BD, Lock RB, Kavallaris M . (2006a). Proteomic analysis reveals a novel role for the actin cytoskeleton in vincristine resistant childhood leukemia—an in vivo study. Proteomics 6: 1681–1694.

    Article  CAS  PubMed  Google Scholar 

  • Verrills NM, Po'uha ST, Liu ML, Liaw TY, Larsen MR, Ivery MT et al. (2006b). Alterations in gamma-actin and tubulin-targeted drug resistance in childhood leukemia. J Natl Cancer Inst 98: 1363–1374.

    Article  CAS  PubMed  Google Scholar 

  • Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K et al. (1998). Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393: 809–812.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor Kensaku Mizuno, Tohoku University, Japan, for providing the LIMK2 plasmid and Professor Peter Gunning, University of New South Wales, Sydney, Australia, for γ-actin Ab. This work was supported by the Children's Cancer Institute Australia for Medical Research, which is affiliated with the University of New South Wales and Sydney Children's Hospital, and by grants from the New South Wales Cancer Council (MK). MK is supported by a NHMRC Senior Research Fellowship, STP was supported by an Endeavour International Postgraduate Research Scholarship and MSYS is supported by an Australian Postgraduate Award. OB is a NHMRC Principal Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Kavallaris.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Po'uha, S., Shum, M., Goebel, A. et al. LIM-kinase 2, a regulator of actin dynamics, is involved in mitotic spindle integrity and sensitivity to microtubule-destabilizing drugs. Oncogene 29, 597–607 (2010). https://doi.org/10.1038/onc.2009.367

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.367

Keywords

This article is cited by

Search

Quick links