Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis of phosphopeptide recognition by the BRCT domain of BRCA1

Abstract

The BRCT repeats in BRCA1 are essential for its tumor suppressor activity and interact with phosphorylated protein targets containing the sequence pSer-X-X-Phe, where X indicates any residue. The structure of the tandem BRCA1 BRCT repeats bound to an optimized phosphopeptide reveals that the N-terminal repeat harbors a conserved BRCT phosphoserine-binding pocket, while the interface between the repeats forms a hydrophobic groove that recognizes the phenylalanine. Crystallographic and biochemical data suggest that the structural integrity of both binding sites is essential for peptide recognition. The diminished peptide-binding capacity observed for cancer-associated BRCA1-BRCT variants may explain the enhanced cancer risks associated with these mutations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the BRCA1 BRCT–peptide complex.
Figure 2: Details of BRCA1 BRCT–peptide interactions.
Figure 3: Ability of mutant forms of the BRCA1 BRCT domain to bind pSer-containing peptides.
Figure 4: Structure determination of variant V1809F.
Figure 5: Occlusion of the Phe(+3)-binding pocket by BRCA1 missense mutations V1809F and M1775R.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Nathanson, K.L., Wooster, R., Weber, B.L. & Nathanson, K.N. Breast cancer genetics: what we know and what we need. Nat. Med. 7, 552–556 (2001).

    Article  CAS  Google Scholar 

  2. Scully, R. et al. Genetic analysis of BRCA1 function in a defined tumor cell line. Mol. Cell 4, 1093–1099 (1999).

    Article  CAS  Google Scholar 

  3. Venkitaraman, A.R. Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108, 171–182 (2002).

    Article  CAS  Google Scholar 

  4. Cantor, S.B. et al. Bach1, a novel helicase-like protein, interacts directly with brca1 and contributes to its DNA repair function. Cell 105, 149–160 (2001).

    Article  CAS  Google Scholar 

  5. Bork, P. et al. A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins. FASEB J. 11, 68–76 (1997).

    Article  CAS  Google Scholar 

  6. Koonin, E.V., Altschul, S.F. & Bork, P. BRCA1 protein products ... Functional motifs... Nat. Genet. 13, 266–268 (1996).

    Article  CAS  Google Scholar 

  7. Callebaut, I. & Mornon, J.P. From BRCA1 to RAP1: a widespread BRCT module closely associated with DNA repair. FEBS Lett. 400, 25–30 (1997).

    Article  CAS  Google Scholar 

  8. Zhang, X. et al. Structure of an XRCC1 BRCT domain: a new protein-protein interaction module. EMBO J. 17, 6404–6511 (1998).

    Article  CAS  Google Scholar 

  9. Huyton, T., Bates, P.A., Zhang, X., Sternberg, M.J. & Freemont, P.S. The BRCA1 C-terminal domain: structure and function. Mutat. Res. 460, 319–332 (2000).

    Article  CAS  Google Scholar 

  10. Williams, R.S., Green, R. & Glover, J.N. Crystal structure of the BRCT repeat region from the breast cancer–associated protein BRCA1. Nat. Struct. Biol. 8, 838–842 (2001).

    Article  CAS  Google Scholar 

  11. Joo, W.S. et al. Structure of the 53BP1 BRCT region bound to p53 and its comparison to the Brca1 BRCT structure. Genes Dev. 16, 583–593 (2002).

    Article  CAS  Google Scholar 

  12. Krishnan, V.V., Thornton, K.H., Thelen, M.P. & Cosman, M. Solution structure and backbone dynamics of the human DNA ligase IIIα BRCT domain. Biochemistry 40, 13158–13166 (2001).

    Article  CAS  Google Scholar 

  13. Derbyshire, D.J. et al. Crystal structure of human 53BP1 BRCT domains bound to p53 tumour suppressor. EMBO J. 21, 3863–3872 (2002).

    Article  CAS  Google Scholar 

  14. Williams, R.S. & Glover, J.N. Structural consequences of a cancer-causing BRCA1-BRCT missense mutation. J. Biol. Chem. 278, 2630–2635 (2003).

    Article  CAS  Google Scholar 

  15. Williams, R.S. et al. Detection of protein folding defects caused by BRCA1-BRCT truncation and missense mutations. J. Biol. Chem. 278, 53007–53016 (2003).

    Article  CAS  Google Scholar 

  16. Rodriguez, M., Yu, X., Chen, J. & Songyang, Z. Phosphopeptide binding specificities of BRCA1 COOH-terminal (BRCT) domains. J. Biol. Chem. 278, 52914–52918 (2003).

    Article  CAS  Google Scholar 

  17. Yu, X., Chini, C.C., He, M., Mer, G. & Chen, J. The BRCT domain is a phospho-protein binding domain. Science 302, 639–642 (2003).

    Article  CAS  Google Scholar 

  18. Manke, I.A., Lowery, D.M., Nguyen, A. & Yaffe, M.B. BRCT repeats as phosphopeptide-binding modules involved in protein targeting. Science 302, 636–639 (2003).

    Article  CAS  Google Scholar 

  19. Yaffe, M.B. & Smerdon, S.J. Phosphoserine/threonine binding domains: you can't pSERious? Structure 9, R33–R38 (2001).

    Article  CAS  Google Scholar 

  20. Ekblad, C.M. et al. Characterisation of the BRCT domains of the breast cancer susceptibility gene product BRCA1. J. Mol. Biol. 320, 431–442 (2002).

    Article  CAS  Google Scholar 

  21. Deffenbaugh, A.M., Frank, T.S., Hoffman, M., Cannon-Albright, L. & Neuhausen, S.L. Characterization of common BRCA1 and BRCA2 variants. Genet. Test. 6, 119–121 (2002).

    Article  CAS  Google Scholar 

  22. Vallon-Christersson, J. et al. Functional analysis of BRCA1 C-terminal missense mutations identified in breast and ovarian cancer families. Hum. Mol. Genet. 10, 353–360 (2001).

    Article  CAS  Google Scholar 

  23. Yarden, R.I. & Brody, L.C. BRCA1 interacts with components of the histone deacetylase complex. Proc. Natl. Acad. Sci. USA 96, 4983–4988 (1999).

    Article  CAS  Google Scholar 

  24. Yu, X., Wu, L.C., Bowcock, A.M., Aronheim, A. & Baer, R. The C-terminal (BRCT) domains of BRCA1 interact in vivo with CtIP, a protein implicated in the CtBP pathway of transcriptional repression. J. Biol. Chem. 273, 25388–25392 (1998).

    Article  CAS  Google Scholar 

  25. Miki, Y. et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266, 66–71 (1994).

    Article  CAS  Google Scholar 

  26. Sibanda, B.L. et al. Crystal structure of an Xrcc4–DNA ligase IV complex. Nat. Struct. Biol. 8, 1015–1019 (2001).

    Article  CAS  Google Scholar 

  27. Clapperton, J.A. et al. Structure and mechanism of BRCA1 BRCT domain recognition of phosphorylated BACH1 with implications for cancer. Nat. Struct. Mol. Biol. advance online publication, 9 May 2004 (doi:10.1038/nsmb775).

  28. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–325 (1997).

    Article  CAS  Google Scholar 

  29. Vagin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Cryst. 30, 1022–1025 (1997).

    Article  CAS  Google Scholar 

  30. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta. Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  31. Terwilliger, T.C. SOLVE and RESOLVE: automated structure solution and density modification. Methods Enzymol. 374, 22–37 (2003).

    Article  CAS  Google Scholar 

  32. Winn, M.D., Isupov, M.N. & Murshudov, G.N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta. Crystallogr. D 57, 122–133 (2001).

    Article  CAS  Google Scholar 

  33. Laskowski, R.A., MacArthur, M.W. & Thornton, J.M. Validation of protein models derived from experiment. Curr. Opin. Struct. Biol. 8, 631–639 (1998).

    Article  CAS  Google Scholar 

  34. Merritt, E.A. & Bacon, D.J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

  35. Esnouf, R.M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. Model. 15, 112–113, 132–134 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Parrish, E. Bergmann, T. Moraes, J. Holton and the Berkeley Centre for Structural Biology staff for discussions and technical support during data collection. Data was collected on Advanced Light Source beamline 8.3.1 with funding from the Alberta Synchrotron Institute as part of a participating research team. We thank M. Yaffe and S. Smerdon for sharing unpublished data and the gift of biotinylated peptide libraries, and R. Boyko for help with BRCT sequence alignments. This work was supported by a grant from the Canadian Breast Cancer Research Alliance. J.N.M.G. is a Canada research chair in structural molecular biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J N Mark Glover.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, R., Lee, M., Hau, D. et al. Structural basis of phosphopeptide recognition by the BRCT domain of BRCA1. Nat Struct Mol Biol 11, 519–525 (2004). https://doi.org/10.1038/nsmb776

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb776

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing