Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Formaldehyde catabolism is essential in cells deficient for the Fanconi anemia DNA-repair pathway

Abstract

Metabolism is predicted to generate formaldehyde, a toxic, simple, reactive aldehyde that can damage DNA. Here we report a synthetic lethal interaction in avian cells between ADH5, encoding the main formaldehyde-detoxifying enzyme, and the Fanconi anemia (FA) DNA-repair pathway. These results define a fundamental role for the combined action of formaldehyde catabolism and DNA cross-link repair in vertebrate cell survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The FA DNA-repair pathway ensures genome stability after exogenous formaldehyde exposure.
Figure 2: FANCD2 and ADH5 are synthetically lethal in DT40 cells.
Figure 3: The FA core complex gene FANCL and ADH5 are synthetically lethal in DT40 cells.

Similar content being viewed by others

References

  1. Muller, L.U. & Williams, D.A. Mutat. Res. 668, 141–149 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Crossan, G.P. et al. Nat. Genet. 43, 147–152 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stoepker, C. et al. Nat. Genet. 43, 138–141 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Kim, Y. et al. Nat. Genet. 43, 142–146 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Joenje, H. & Patel, K.J. Nat. Rev. Genet. 2, 446–457 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Patel, K.J. & Joenje, H. DNA Repair (Amst.) 6, 885–890 (2007).

    Article  CAS  Google Scholar 

  7. de Winter, J.P. & Joenje, H. Mutat. Res. 668, 11–19 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Rosado, I.V., Niedzwiedz, W., Alpi, A.F. & Patel, K.J. Nucleic Acids Res. 37, 4360–4370 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Langevin, F., Crossan, G.P., Rosado, I.V., Arends, M.J. & Patel, K.J. Nature 475, 53–58 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Mosammaparast, N. & Shi, Y. Annu. Rev. Biochem. 79, 155–179 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Ridpath, J.R. et al. Cancer Res. 67, 11117–11122 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Noda, T. et al. Biochem. Biophys. Res. Commun. 404, 206–210 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Nomura, Y., Adachi, N. & Koyama, H. Genes Cells 12, 1111–1122 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Trewick, S.C., Henshaw, T.F., Hausinger, R.P., Lindahl, T. & Sedgwick, B. Nature 419, 174–178 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Falnes, P.O., Johansen, R.F. & Seeberg, E. Nature 419, 178–182 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Iborra, F.J. et al. J. Histochem. Cytochem. 40, 1865–1878 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Mosedale, G. et al. Nat. Struct. Mol. Biol. 12, 763–771 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, X.Y. et al. PLoS Genet. 5, e1000645 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank N. Adachi and H. Koyama (Kihara Institute for Biological Research, Japan) for kindly providing NALM-6 human cell lines. We are grateful to J. Sutherland and K. Lang (MRC Laboratory of Molecular Biology) for chemical insight and to M. Daly and F. Zhang (MRC Laboratory of Molecular Biology) for invaluable help with flow cytometry. I.V.R. and F.L. are funded by the Fanconi Anaemia Research Fund and Children's Leukaemia Trust, respectively.

Author information

Authors and Affiliations

Authors

Contributions

I.V.R. and K.J.P. designed the study and the experiments, and wrote the paper. I.V.R. performed the majority of the experiments presented. F.L. contributed to DT40 clonogenic assays and assisted in the generation of ADH5-deficient cell lines. G.P.C. helped with analysis of chromosome breaks. M.T. generated and provided the FANCD2 inducible cell line.

Corresponding author

Correspondence to Ketan J Patel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Figures 1–5 (PDF 3850 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosado, I., Langevin, F., Crossan, G. et al. Formaldehyde catabolism is essential in cells deficient for the Fanconi anemia DNA-repair pathway. Nat Struct Mol Biol 18, 1432–1434 (2011). https://doi.org/10.1038/nsmb.2173

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2173

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing