Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuronal P/Q-type calcium channel dysfunction in inherited disorders of the CNS

Abstract

The past two decades have witnessed the emergence of a new and expanding field of neurological diseases—the genetic ion channelopathies. These disorders arise from mutations in genes that encode ion channel subunits, and manifest as paroxysmal attacks involving the brain or spinal cord, and/or muscle. The voltage-gated P/Q-type calcium channel (P/Q channel) is highly expressed in the cerebellum, hippocampus and cortex of the mammalian brain. The P/Q channel has a fundamental role in mediating fast synaptic transmission at central and peripheral nerve terminals. Autosomal dominant mutations in the CACNA1A gene, which encodes voltage-gated P/Q-type calcium channel subunit α1 (the principal pore-forming subunit of the P/Q channel) are associated with episodic and progressive forms of cerebellar ataxia, familial hemiplegic migraine, vertigo and epilepsy. This Review considers, from both a clinical and genetic perspective, the various neurological phenotypes arising from inherited P/Q channel dysfunction, with a focus on recent advances in the understanding of the pathogenetic mechanisms underlying these disorders.

Key Points

  • The neuronal voltage-gated P/Q-type calcium channel (P/Q channel) has a fundamental role in synaptic transmission in the human CNS

  • Mutations in CACNA1A, which encodes the α1 subunit of the P/Q channel, are associated with episodic ataxia type 2, familial hemiplegic migraine-1 and spinocerebellar ataxia type 6

  • Loss-of-function mutations in CACNA1A are associated with episodic ataxia type 2; clinical features include intermittent ataxia, headache and vertigo, and acetazolamide (a carbonic anhydrase inhibitor) is an effective treatment

  • Gain-of-function missense mutations in CACNA1A are associated with familial hemiplegic migraine-1

  • Spinocerebellar ataxia type 6 is associated with abnormal expansion of a polyglutamine repeat in the C-terminus of the P/Q channel α1 subunit

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The voltage-gated P/Q-type calcium channel (P/Q channel).

Similar content being viewed by others

References

  1. Westenbroek, R. E. et al. Immunochemical identification and subcellular distribution of the α1A subunits of brain calcium channels. J. Neurosci. 15, 6403–6418 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Diriong, S. et al. Chromosomal localization of the human genes for α1A, α1B, and α1E voltage-dependent Ca2+ channel subunits. Genomics 30, 605–609 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Jodice, C. et al. Episodic ataxia type 2 (EA2) and spinocerebellar ataxia type 6 (SCA6) due to CAG repeat expansion in the CACNA1A gene on chromosome 19p. Hum. Mol. Genet. 6, 1973–1978 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. McKusick–Nathans Institute of Genetic Medicine, John Hopkins University School of Medicine. OMIM—Online Mendelian Inheritance in Man [online], (2011).

  5. Jouvenceau, A. et al. Human epilepsy associated with dysfunction of the brain P/Q-type calcium channel. Lancet 358, 801–807 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Imbrici, P. et al. Dysfunction of the brain calcium channel CaV2.1 in absence epilepsy and episodic ataxia. Brain 127, 2682–2692 (2004).

    Article  PubMed  Google Scholar 

  7. Rajakulendran, S. et al. Genetic and functional characterisation of the P/Q calcium channel in episodic ataxia with epilepsy. J. Physiol. 588, 1905–1913 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vincent, A. Autoimmune channelopathies: well-established and emerging immunotherapy-responsive diseases of the peripheral and central nervous systems. J. Clin. Immunol. 30 (Suppl. 1), S97–S102 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Farrugia, M. E. & Vincent, A. Autoimmune mediated neuromuscular junction defects. Curr. Opin. Neurol. 23, 489–495 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Graus, F. et al. P/Q type calcium-channel antibodies in paraneoplastic cerebellar degeneration with lung cancer. Neurology 59, 764–766 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Spillane, J., Beeson, D. J. & Kullmann, D. M. Myasthenia and related disorders of the neuromuscular junction. J. Neurol. Neurosurg. Psychiatry 81, 850–857 (2010).

    Article  PubMed  Google Scholar 

  12. Yang, J., Ellinor, P. T., Sather, W. A., Zhang, J. F. & Tsien, R. W. Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature 366, 158–161 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Van Petegem, F., Chatelain, F. C. & Minor, D. L. Jr. Insights into voltage-gated calcium channel regulation from the structure of the CaV1.2 IQ domain–Ca2+/calmodulin complex. Nat. Struct. Mol. Biol. 12, 1108–1115 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mochida, S. et al. Requirement for the synaptic protein interaction site for reconstitution of synaptic transmission by P/Q-type calcium channels. Proc. Natl Acad. Sci. USA 100, 2819–2824 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rettig, J. et al. Isoform-specific interaction of the α1A subunits of brain Ca2+ channels with the presynaptic proteins syntaxin and SNAP-25. Proc. Natl Acad. Sci. USA 93, 7363–7368 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Catterall, W. A. Interactions of presynaptic Ca2+ channels and SNARE proteins in neurotransmitter release. Ann. N. Y. Acad. Sci. 868, 144–159 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Mochida, S., Westenbroek, R. E., Yokoyama, C. T., Itoh, K. & Catterall, W. A. Subtype-selective reconstitution of synaptic transmission in sympathetic ganglion neurons by expression of exogenous calcium channels. Proc. Natl Acad. Sci. USA 100, 2813–2818 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Catterall, W. A. Structure and regulation of voltage-gated Ca2+ channels. Annu. Rev. Cell Dev. Biol. 16, 521–555 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Catterall, W. A. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26, 13–25 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Jorntell, H. & Hansel, C. Synaptic memories upside down: bidirectional plasticity at cerebellar parallel fiber–Purkinje cell synapses. Neuron 52, 227–238 (2006).

    Article  PubMed  CAS  Google Scholar 

  21. Higley, M. J. & Sabatini, B. L. Calcium signaling in dendrites and spines: practical and functional considerations. Neuron 59, 902–913 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Kongsamut, S., Lipscombe, D. & Tsien, R. W. The N-type Ca channel in frog sympathetic neurons and its role in α-adrenergic modulation of transmitter release. Ann. N. Y. Acad. Sci. 560, 312–333 (1989).

    Article  CAS  PubMed  Google Scholar 

  23. Bourinet, E. et al. Splicing of α1A subunit gene generates phenotypic variants of P- and Q-type calcium channels. Nat. Neurosci. 2, 407–415 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Tsunemi, T. et al. Novel CaV2.1 splice variants isolated from Purkinje cells do not generate P-type Ca2+ current. J. Biol. Chem. 277, 7214–7221 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Soong, T. W. et al. Systematic identification of splice variants in human P/Q-type channel α1(2.1) subunits: implications for current density and Ca2+-dependent inactivation. J. Neurosci. 22, 10142–10152 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Graves, T. D. et al. Premature stop codons in a facilitating EF-hand splice variant of CaV2.1 cause episodic ataxia type 2. Neurobiol. Dis. 32, 10–15 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Zhuchenko, O. et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the α1A-voltage-dependent calcium channel. Nat. Genet. 15, 62–69 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Ishikawa, K. et al. Abundant expression and cytoplasmic aggregations of α1A voltage-dependent calcium channel protein associated with neurodegeneration in spinocerebellar ataxia type 6. Hum. Mol. Genet. 8, 1185–1193 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Romaniello, R. et al. A wide spectrum of clinical, neurophysiological and neuroradiological abnormalities in a family with a novel CACNA1A mutation. J. Neurol. Neurosurg. Psychiatry 81, 840–843 (2010).

    Article  PubMed  Google Scholar 

  30. Parker, H. L. Periodic ataxia. Collect. Papers Mayo Clinic Mayo Found. 38, 642–645 (1946–1947).

    PubMed  Google Scholar 

  31. Ophoff, R. A. et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87, 543–552 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Jen, J. C. et al. Primary episodic ataxias: diagnosis, pathogenesis and treatment. Brain 130, 2484–2493 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Jen, J., Kim, G. W. & Baloh, R. W. Clinical spectrum of episodic ataxia type 2. Neurology 62, 17–22 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Baloh, R. W., Yue, Q., Furman, J. M. & Nelson, S. F. Familial episodic ataxia: clinical heterogeneity in four families linked to chromosome 19p. Ann. Neurol. 41, 8–16 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Riant, F., Mourtada, R., Saugier-Veber, P. & Tournier-Lasserve, E. Large CACNA1A deletion in a family with episodic ataxia type 2. Arch. Neurol. 65, 817–820 (2008).

    Article  PubMed  Google Scholar 

  36. Imbrici, P. et al. Late-onset episodic ataxia type 2 due to an in-frame insertion in CACNA1A. Neurology 65, 944–946 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Engel, K. C., Anderson, J. H., Gomez, C. M. & Soechting, J. F. Deficits in ocular and manual tracking due to episodic ataxia type 2. Mov. Disord. 19, 778–787 (2004).

    Article  PubMed  Google Scholar 

  38. Sasaki, O. et al. Neurotological findings in a family with episodic ataxia. J. Neurol. 250, 373–375 (2003).

    Article  PubMed  Google Scholar 

  39. Jen, J. et al. Loss-of-function EA2 mutations are associated with impaired neuromuscular transmission. Neurology 57, 1843–1848 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Melzer, N., Classen, J., Reiners, K. & Buttmann, M. Fluctuating neuromuscular transmission defects and inverse acetazolamide response in episodic ataxia type 2 associated with the novel CaV2.1 single amino acid substitution R2090Q. J. Neurol. Sci. 296, 104–106 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Spacey, S. D., Materek, L. A., Szczygielski, B. I. & Bird, T. D. Two novel CACNA1A gene mutations associated with episodic ataxia type 2 and interictal dystonia. Arch. Neurol. 62, 314–316 (2005).

    Article  PubMed  Google Scholar 

  42. Roubertie, A. et al. Benign paroxysmal tonic upgaze, benign paroxysmal torticollis, episodic ataxia and CACNA1A mutation in a family. J. Neurol. 255, 1600–1602 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Eunson, L. H., Graves, T. D. & Hanna, M. G. New calcium channel mutations predict aberrant RNA splicing in episodic ataxia. Neurology 65, 308–310 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Mochizuki, Y. et al. Hereditary paroxysmal ataxia with mental retardation: a clinicopathological study in relation to episodic ataxia type 2. Acta Neuropathol. 108, 345–349 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Vighetto, A., Froment, J. C., Trillet, M. & Aimard, G. Magnetic resonance imaging in familial paroxysmal ataxia. Arch. Neurol. 45, 547–549 (1988).

    Article  CAS  PubMed  Google Scholar 

  46. Hawkes, C. H. Familial paroxysmal ataxia: report of a family. J. Neurol. Neurosurg. Psychiatry 55, 212–213 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bain, P. G., O'Brien, M. D., Keevil, S. F. & Porter, D. A. Familial periodic cerebellar ataxia: a problem of cerebellar intracellular pH homeostasis. Ann. Neurol. 31, 147–154 (1992).

    Article  CAS  PubMed  Google Scholar 

  48. Harno, H. et al. Decreased cerebellar total creatine in episodic ataxia type 2: a 1H MRS study. Neurology 64, 542–544 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Vahedi, K. et al. A gene for hereditary paroxysmal cerebellar ataxia maps to chromosome 19p. Ann. Neurol. 37, 289–293 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Kramer, P. L. et al. A locus for the nystagmus-associated form of episodic ataxia maps to an 11-cM region on chromosome 19p. Am. J. Hum. Genet. 57, 182–185 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. von Brederlow, B., Hahn, A. F., Koopman, W. J., Ebers, G. C. & Bulman, D. E. Mapping the gene for acetazolamide responsive hereditary paryoxysmal cerebellar ataxia to chromosome 19p. Hum. Mol. Genet. 4, 279–284 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Mantuano, E. et al. Clusters of non-truncating mutations of P/Q type Ca2+ channel subunit CaV2.1 causing episodic ataxia 2. J. Med. Genet. 41, e82 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jen, J. C. & Baloh, R. W. Genetics of episodic ataxia. Adv. Neurol. 89, 459–461 (2002).

    PubMed  Google Scholar 

  54. Guida, S. et al. Complete loss of P/Q calcium channel activity caused by a CACNA1A missense mutation carried by patients with episodic ataxia type 2. Am. J. Hum. Genet. 68, 759–764 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Strupp, M., Zwergal, A. & Brandt, T. Episodic ataxia type 2. Neurotherapeutics 4, 267–273 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Wan, J., Carr, J. R., Baloh, R. W. & Jen, J. C. Nonconsensus intronic mutations cause episodic ataxia. Ann. Neurol. 57, 131–135 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Labrum, R. W. et al. Large scale calcium channel gene rearrangements in episodic ataxia and hemiplegic migraine: implications for diagnostic testing. J. Med. Genet. 46, 786–791 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Riant, F. et al. Identification of CACNA1A large deletions in four patients with episodic ataxia. Neurogenetics 11, 101–106 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Veneziano, L. et al. Newly characterised 5′ and 3′ regions of CACNA1A gene harbour mutations associated with familial hemiplegic migraine and episodic ataxia. J. Neurol. Sci. 276, 31–37 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Mantuano, E. et al. Identification of novel and recurrent CACNA1A gene mutations in fifteen patients with episodic ataxia type 2. J. Neurol. Sci. 291, 30–36 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Page, K. M. et al. N terminus is key to the dominant negative suppression of CaV2 calcium channels: implications for episodic ataxia type 2. J. Biol. Chem. 285, 835–844 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Jeng, C. J., Sun, M. C., Chen, Y. W. & Tang, C. Y. Dominant-negative effects of episodic ataxia type 2 mutations involve disruption of membrane trafficking of human P/Q-type Ca2+ channels. J. Cell. Physiol. 214, 422–433 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Raike, R. S., Kordasiewicz, H. B., Thompson, R. M. & Gomez, C. M. Dominant-negative suppression of CaV2.1 currents by α12.1 truncations requires the conserved interaction domain for β subunits. Mol. Cell. Neurosci. 34, 168–177 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Page, K. M. et al. Dominant-negative calcium channel suppression by truncated constructs involves a kinase implicated in the unfolded protein response. J. Neurosci. 24, 5400–5409 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mezghrani, A. et al. A destructive interaction mechanism accounts for dominant-negative effects of misfolded mutants of voltage-gated calcium channels. J. Neurosci. 28, 4501–4511 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cao, Y. Q. et al. Presynaptic Ca2+ channels compete for channel type-preferring slots in altered neurotransmission arising from Ca2+ channelopathy. Neuron 43, 387–400 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Maselli, R. A. et al. Presynaptic failure of neuromuscular transmission and synaptic remodeling in EA2. Neurology 61, 1743–1748 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Walter, J. T., Alviña, K., Womack, M. D., Chevez, C. & Khodakhah, K. Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. Nat. Neurosci. 9, 389–397 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Pietrobon, D. Function and dysfunction of synaptic calcium channels: insights from mouse models. Curr. Opin. Neurobiol. 15, 257–265 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Seemungal, B. M., Gresty, M. A. & Bronstein, A. M. The endocrine system, vertigo and balance. Curr. Opin. Neurol. 14, 27–34 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Helmich, R. C. et al. The dynamic regulation of cortical excitability is altered in episodic ataxia type 2. Brain 133, 3519–3529 (2010).

    Article  PubMed  Google Scholar 

  72. Harno, H. et al. Acetazolamide improves neurotological abnormalities in a family with episodic ataxia type 2 (EA-2). J. Neurol. 251, 232–234 (2004).

    Article  PubMed  Google Scholar 

  73. Griggs, R. C., Moxley, R. T. 3rd, Lafrance, R. A. & McQuillen, J. Hereditary paroxysmal ataxia: response to acetazolamide. Neurology 28, 1259–1264 (1978).

    Article  CAS  PubMed  Google Scholar 

  74. Calandriello, L. et al. Acetazolamide-responsive episodic ataxia in an Italian family refines gene mapping on chromosome 19p13. Brain 120, 805–812 (1997).

    Article  PubMed  Google Scholar 

  75. Spacey, S. D., Hildebrand, M. E., Materek, L. A., Bird, T. D. & Snutch, T. P. Functional implications of a novel EA2 mutation in the P/Q-type calcium channel. Ann. Neurol. 56, 213–220 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Strupp, M. et al. Treatment of episodic ataxia type 2 with the potassium channel blocker 4-aminopyridine. Neurology 62, 1623–1625 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Strupp, M. et al. A randomized trial of 4-aminopyridine in EA2 and related familial episodic ataxias. Neurology 77, 269–275 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dieterich, M. & Brandt, T. Episodic vertigo related to migraine (90 cases): vestibular migraine? J. Neurol. 246, 883–892 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Furman, J. M., Marcus, D. A. & Balaban, C. D. Migrainous vertigo: development of a pathogenetic model and structured diagnostic interview. Curr. Opin. Neurol. 16, 5–13 (2003).

    Article  PubMed  Google Scholar 

  80. Neuhauser, H., Leopold, M., von Brevern, M., Arnold, G. & Lempert, T. The interrelations of migraine, vertigo, and migrainous vertigo. Neurology 56, 436–441 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Murdin, L., Davies, R. A. & Bronstein, A. M. Vertigo as a migraine trigger. Neurology 73, 638–642 (2009).

    Article  PubMed  Google Scholar 

  82. Browne, D. L. et al. Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1. Nat. Genet. 8, 136–140 (1994).

    Article  CAS  PubMed  Google Scholar 

  83. Litt, M. et al. A gene for episodic ataxia/myokymia maps to chromosome 12p13. Am. J. Hum. Genet. 55, 702–709 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Eunson, L. H. et al. Clinical, genetic, and expression studies of mutations in the potassium channel gene KCNA1 reveal new phenotypic variability. Ann. Neurol. 48, 647–656 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Rajakulendran, S., Schorge, S., Kullmann, D. M. & Hanna, M. G. Episodic ataxia type 1: a neuronal potassium channelopathy. Neurotherapeutics 4, 258–266 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Escayg, A. et al. Coding and noncoding variation of the human calcium-channel β4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. Am. J. Hum. Genet. 66, 1531–1539 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Graves, T. D. & Hanna, M. G. Episodic ataxia: SLC1A3 and CACNB4 do not explain the apparent genetic heterogeneity. J. Neurol. 255, 1097–1099 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Cader, M. Z., Steckley, J. L., Dyment, D. A., McLachlan, R. S. & Ebers, G. C. A genome-wide screen and linkage mapping for a large pedigree with episodic ataxia. Neurology 65, 156–158 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Farmer, T. W. & Mustian, V. M. Familial periodic vertigo, diplopia, and ataxia. Trans. Am. Neurol. Assoc. 87, 86–90 (1962).

    CAS  PubMed  Google Scholar 

  90. Damji, K. F. et al. Periodic vestibulocerebellar ataxia, an autosomal dominant ataxia with defective smooth pursuit, is genetically distinct from other autosomal dominant ataxias. Arch. Neurol. 53, 338–344 (1996).

    Article  CAS  PubMed  Google Scholar 

  91. Meisler, M. H., Kearney, J., Escayg, A., MacDonald, B. T. & Sprunger, L. K. Sodium channels and neurological disease: insights from Scn8a mutations in the mouse. Neuroscientist 7, 136–145 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Jen, J. C., Wan, J., Palos, T. P., Howard, B. D. & Baloh, R. W. Mutation in the glutamate transporter EAAT1 causes episodic ataxia, hemiplegia, and seizures. Neurology 65, 529–534 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. de Vries, B. et al. Episodic ataxia associated with EAAT1 mutation C186S affecting glutamate reuptake. Arch. Neurol. 66, 97–101 (2009).

    Article  PubMed  Google Scholar 

  94. Kerber, K. A., Jen, J. C., Lee, H., Nelson, S. F. & Baloh, R. W. A new episodic ataxia syndrome with linkage to chromosome 19q13. Arch. Neurol. 64, 749–752 (2007).

    Article  PubMed  Google Scholar 

  95. Cha, Y. H. et al. Episodic vertical oscillopsia with progressive gait ataxia: clinical description of a new episodic syndrome and evidence of linkage to chromosome 13q. J. Neurol. Neurosurg. Psychiatry 78, 1273–1275 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ducros, A. et al. The clinical spectrum of familial hemiplegic migraine associated with mutations in a neuronal calcium channel. N. Engl. J. Med. 345, 17–24 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Thomsen, L. L., Olesen, J. & Russell, M. B. Increased risk of migraine with typical aura in probands with familial hemiplegic migraine and their relatives. Eur. J. Neurol. 10, 421–427 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Ducros, A. et al. Mapping of a second locus for familial hemiplegic migraine to 1q21–q23 and evidence of further heterogeneity. Ann. Neurol. 42, 885–890 (1997).

    Article  CAS  PubMed  Google Scholar 

  99. Pietrobon, D. Familial hemiplegic migraine. Neurotherapeutics 4, 274–284 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Kors, E. E. et al. Delayed cerebral edema and fatal coma after minor head trauma: role of the CACNA1A calcium channel subunit gene and relationship with familial hemiplegic migraine. Ann. Neurol. 49, 753–760 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. De Fusco, M. et al. Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump α2 subunit associated with familial hemiplegic migraine type 2. Nat. Genet. 33, 192–196 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Riant, F. et al. ATP1A2 mutations in 11 families with familial hemiplegic migraine. Hum. Mutat. 26, 281 (2005).

    Article  PubMed  Google Scholar 

  103. Dichgans, M. et al. Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. Lancet 366, 371–377 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Tottene, A. et al. Familial hemiplegic migraine mutations increase Ca2+ influx through single human CaV2.1 channels and decrease maximal CaV2.1 current density in neurons. Proc. Natl Acad. Sci. USA 99, 13284–13289 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hans, M. et al. Functional consequences of mutations in the human α1A calcium channel subunit linked to familial hemiplegic migraine. J. Neurosci. 19, 1610–1619 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. van den Maagdenberg, A. M. et al. A Cacna1a knockin migraine mouse model with increased susceptibility to cortical spreading depression. Neuron 41, 701–710 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Omata, T., Takanashi, J., Wada, T., Arai, H. & Tanabe, Y. Genetic diagnosis and acetazolamide treatment of familial hemiplegic migraine. Brain Dev. 33, 332–334 (2011).

    Article  PubMed  Google Scholar 

  108. Battistini, S. et al. A new CACNA1A gene mutation in acetazolamide-responsive familial hemiplegic migraine and ataxia. Neurology 53, 38–43 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Jen, J. C. Familial hemiplegic migraine. GeneReviews, NCBI Bookshelf, US National Library of Medicine, NIH [online], (2009).

    Google Scholar 

  110. Yu-Wai-Man, P., Gorman, G., Bateman, D. E., Leigh, R. J. & Chinnery, P. F. Vertigo and vestibular abnormalities in spinocerebellar ataxia type 6. J. Neurol. 256, 78–82 (2009).

    Article  PubMed  Google Scholar 

  111. Craig, K., Keers, S. M., Archibald, K., Curtis, A. & Chinnery, P. F. Molecular epidemiology of spinocerebellar ataxia type 6. Ann. Neurol. 55, 752–755 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Gomez, C. M. et al. Spinocerebellar ataxia type 6: gaze-evoked and vertical nystagmus, Purkinje cell degeneration, and variable age of onset. Ann. Neurol. 42, 933–950 (1997).

    Article  CAS  PubMed  Google Scholar 

  113. Hashimoto, T., Sasaki, O., Yoshida, K., Takei, Y. & Ikeda, S. Periodic alternating nystagmus and rebound nystagmus in spinocerebellar ataxia type 6. Mov. Disord. 18, 1201–1204 (2003).

    Article  PubMed  Google Scholar 

  114. Matsuyama, Z. et al. Direct alteration of the P/Q-type Ca2+ channel property by polyglutamine expansion in spinocerebellar ataxia 6. J. Neurosci. 19, RC14 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Piedras-Renteria, E. S. et al. Increased expression of α1A Ca2+ channel currents arising from expanded trinucleotide repeats in spinocerebellar ataxia type 6. J. Neurosci. 21, 9185–9193 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Restituito, S. et al. The polyglutamine expansion in spinocerebellar ataxia type 6 causes a β subunit-specific enhanced activation of P/Q-type calcium channels in Xenopus oocytes. J. Neurosci. 20, 6394–6403 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Watase, K. et al. Spinocerebellar ataxia type 6 knockin mice develop a progressive neuronal dysfunction with age-dependent accumulation of mutant CaV2.1 channels. Proc. Natl Acad. Sci. USA 105, 11987–11992 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Liu, J. et al. Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. J. Neurosci. 29, 9148–9162 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Schorge, S., van de Leemput, J., Singleton, A., Houlden, H. & Hardy, J. Human ataxias: a genetic dissection of inositol triphosphate receptor (ITPR1)-dependent signalling. Trends Neurosci. 33, 211–219 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Khosravani, H. & Zamponi, G. W. Voltage-gated calcium channels and idiopathic generalized epilepsies. Physiol. Rev. 86, 941–966 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Miki, T. et al. Two novel alleles of tottering with distinct CaV2.1 calcium channel neuropathologies. Neuroscience 155, 31–44 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Zwingman, T. A., Neumann, P. E., Noebels, J. L. & Herrup, K. Rocker is a new variant of the voltage-dependent calcium channel gene Cacna1a. J. Neurosci. 21, 1169–1178 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Noebels, J. L. & Sidman, R. L. Inherited epilepsy: spike-wave and focal motor seizures in the mutant mouse tottering. Science 204, 1334–1336 (1979).

    Article  CAS  PubMed  Google Scholar 

  124. Fletcher, C. F. et al. Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell 87, 607–617 (1996).

    Article  CAS  PubMed  Google Scholar 

  125. Fletcher, C. F. & Frankel, W. N. Ataxic mouse mutants and molecular mechanisms of absence epilepsy. Hum. Mol. Genet. 8, 1907–1912 (1999).

    Article  CAS  PubMed  Google Scholar 

  126. Lorenzon, N. M., Lutz, C. M., Frankel, W. N. & Beam, K. G. Altered calcium channel currents in Purkinje cells of the neurological mutant mouse leaner. J. Neurosci. 18, 4482–4489 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Neufeld, M. Y., Nisipeanu, P., Chistik, V. & Korczyn, A. D. The electroencephalogram in acetazolamide-responsive periodic ataxia. Mov. Disord. 11, 283–288 (1996).

    Article  CAS  PubMed  Google Scholar 

  128. Van Bogaert, P. & Szliwowski, H. B. EEG findings in acetazolamide-responsive hereditary paroxysmal ataxia. Neurophysiol. Clin. 26, 335–340 (1996).

    Article  CAS  PubMed  Google Scholar 

  129. Beauvais, K. et al. New CACNA1A gene mutation in a case of familial hemiplegic migraine with status epilepticus. Eur. Neurol. 52, 58–61 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Kors, E. E. et al. Childhood epilepsy, familial hemiplegic migraine, cerebellar ataxia, and a new CACNA1A mutation. Neurology 63, 1136–1137 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Gourfinkel-An, I. et al. Monogenic idiopathic epilepsies. Lancet Neurol. 3, 209–218 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Chioza, B. et al. Association between the α1A calcium channel gene CACNA1A and idiopathic generalized epilepsy. Neurology 56, 1245–1246 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Cavalleri, G. L. et al. Multicentre search for genetic susceptibility loci in sporadic epilepsy syndrome and seizure types: a case–control study. Lancet Neurol. 6, 970–980 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Sander, T., Toliat, M. R., Heils, A., Becker, C. & Nürnberg, P. Failure to replicate an allelic association between an exon 8 polymorphism of the human α1A calcium channel gene and common syndromes of idiopathic generalized epilepsy. Epilepsy Res. 49, 173–177 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. Helbig, I., Scheffer, I. E., Mulley, J. C. & Berkovic, S. F. Navigating the channels and beyond: unravelling the genetics of the epilepsies. Lancet Neurol. 7, 231–245 (2008).

    Article  PubMed  Google Scholar 

  136. Lapie, P., Goudet, C., Nargeot, J., Fontaine, B. & Lory, P. Electrophysiological properties of the hypokalaemic periodic paralysis mutation (R528H) of the skeletal muscle α 1s subunit as expressed in mouse L cells. FEBS Lett. 382, 244–248 (1996).

    Article  CAS  PubMed  Google Scholar 

  137. Morrill, J. A. & Cannon, S. C. Effects of mutations causing hypokalaemic periodic paralysis on the skeletal muscle L-type Ca2+ channel expressed in Xenopus laevis oocytes. J. Physiol. 520, 321–336 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Jurkat-Rott, K., McCarthy, T. & Lehmann-Horn, F. Genetics and pathogenesis of malignant hyperthermia. Muscle Nerve 23, 4–17 (2000).

    Article  CAS  PubMed  Google Scholar 

  139. Splawski, I. et al. CaV1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119, 19–31 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Splawski, I. et al. Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proc. Natl Acad. Sci. USA 102, 8089–8096 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Liao, P. & Soong, T. W. CaV1.2 channelopathies: from arrhythmias to autism, bipolar disorder, and immunodeficiency. Pflugers Arch. 460, 353–359 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Striessnig, J., Bolz, H. J. & Koschak, A. Channelopathies in CaV1.1, CaV1.3, and CaV1.4 voltage-gated L-type Ca2+ channels. Pflugers Arch. 460, 361–374 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Strom, T. M. et al. An L-type calcium-channel gene mutated in incomplete X-linked congenital stationary night blindness. Nat. Genet. 19, 260–263 (1998).

    Article  CAS  PubMed  Google Scholar 

  144. McRory, J. E. et al. The CACNA1F gene encodes an L-type calcium channel with unique biophysical properties and tissue distribution. J. Neurosci. 24, 1707–1718 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Evans, R. M. & Zamponi, G. W. Presynaptic Ca2+ channels—integration centers for neuronal signaling pathways. Trends Neurosci. 29, 617–624 (2006).

    Article  CAS  PubMed  Google Scholar 

  146. Perez-Reyes, E. Molecular physiology of low-voltage-activated T-type calcium channels. Physiol. Rev. 83, 117–161 (2003).

    Article  CAS  PubMed  Google Scholar 

  147. Perez-Reyes, E. Molecular characterization of T-type calcium channels. Cell Calcium 40, 89–96 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Iftinca, M. C. & Zamponi, G. W. Regulation of neuronal T-type calcium channels. Trends Pharmacol. Sci. 30, 32–40 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. Zamponi, G. W., Lory, P. & Perez-Reyes, E. Role of voltage-gated calcium channels in epilepsy. Pflugers Arch. 460, 395–403 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' research work is supported by the Wellcome Trust (S. Rajakulendran), the Medical Research Council and Action Medical Research (M. G. Hanna). Part of this work was undertaken at University College Hospital, University College London, UK, which receives a proportion of its funding from the National Institute for Health Research Biomedical Research Center. M. G. Hanna is supported by Medical Research Council grant number G0601943.

Author information

Authors and Affiliations

Authors

Contributions

All three authors wrote the manuscript. S. Rajakulendran and D. Kaski researched data for the article, S. Rajakulendran contributed to discussions of the content, and S. Rajakulendran and M. G. Hanna undertook review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Michael G. Hanna.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajakulendran, S., Kaski, D. & Hanna, M. Neuronal P/Q-type calcium channel dysfunction in inherited disorders of the CNS. Nat Rev Neurol 8, 86–96 (2012). https://doi.org/10.1038/nrneurol.2011.228

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2011.228

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing