Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cavernous malformations: natural history, diagnosis and treatment

Abstract

Cavernous malformations (CMs) consist of dilated vascular channels that have a characteristic appearance on MRI. CMs are usually found intracranially, although such lesions can also affect the spinal cord. Individuals with CMs can present with epilepsy and focal neurological deficits or acute intracranial hemorrhage. In many cases, however, patients with such lesions are asymptomatic at diagnosis. Furthermore, several natural history studies have documented that a substantial proportion of asymptomatic CMs follow a benign course. Surgical resection is recommended for CMs that require intervention. Radiosurgery has been advocated for many lesions that have not been easily accessible by conventional surgery. The outcomes of radiosurgery and surgery for deep lesions, however, vary widely between studies, rendering treatment recommendations for such CMs difficult to make. In addition to reviewing the literature, this article will discuss the current understanding of lesion pathophysiology and explore the controversial issues in the management of CMs, such as when to use radiosurgery or surgery in deep-seated lesions, the treatment of epilepsy, and the safety of anticoagulation.

Key Points

  • Cavernous malformations (CMs) are low-flow vascular malformations that are characterized by endothelium-lined sinusoidal chambers and a distinctive appearance on MRI

  • CMs can be either sporadic or hereditary conditions, with lesions of a familial origin occuring in at least 6% of cases

  • Patients with CMs can present with seizures or intracranial hemorrhage; however, up to 40% of cases are asymptomatic

  • Patients that present with seizures are initially managed pharmacologically; however, surgical resection might be warranted if the seizures increase in severity or become refractory to pharmacological treatment

  • Patients who experience a hemorrhage as a result of their CM require treatment if the hemorrhage produces acute and severe neurological signs and symptoms or if the hemorrhage recurs

  • Surgery is the treatment of choice for superficial CMs or for lesions that cause intractable seizures, whereas radiosurgery might be an option for poorly accessible deep lesions

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: KRIT1 protein domain structure.
Figure 2: Potential role of KRIT1 in integrin β1-mediated signaling.
Figure 3: Cavernous malformations on non-contrast-enhanced head CT scans.
Figure 4: Cavernous malformations as depicted on MRI.
Figure 5: Developmental venous anomalies associated with cavernous malformations.
Figure 6: Cavernous malformations on axial susceptibility-weighted images.
Figure 7: A right frontal cavernous malformation depicted on 3T MRI.
Figure 8: Evidence for a cavernous malformation following hemorrhage.
Figure 9: Susceptibility-weighted images of amyloid angiopathy.

Similar content being viewed by others

References

  1. McCormick, W. F. & Nofzinger, J. D. “Cryptic” vascular malformations of the central nervous system. J. Neurosurg. 24, 865–875 (1966).

    CAS  PubMed  Google Scholar 

  2. Zabramski, J. M. et al. The natural history of familial cavernous malformations: results of an ongoing study. J. Neurosurg. 80, 422–432 (1994).

    CAS  PubMed  Google Scholar 

  3. Moriarity, J. L., Clatterbuck, R. E. & Rigamonti, D. The natural history of cavernous malformations. Neurosurg. Clin. N. Am. 10, 411–417 (1999).

    CAS  PubMed  Google Scholar 

  4. Robinson, J. Jr, Awad, I., Magdinec, M. & Paranandi, L. Factors predisposing to clinical disability in patients with cavernous malformations of the brain. Neurosurgery 32, 730–735 (1993).

    PubMed  Google Scholar 

  5. Bertalanffy, H. et al. Cerebral cavernomas in the adult. Review of the literature and analysis of 72 surgically treated patients. Neurosurg. Rev. 25, 1–53 (2002).

    PubMed  Google Scholar 

  6. Otten, P., Pizzolato, G., Rilliet, B. & Berney, J. 131 cases of cavernous angioma (cavernomas) of the CNS, discovered by retrospective analysis of 24,535 autopsies [French]. Neurochirurgie 35, 128–131 (1989).

    Google Scholar 

  7. Mathiesen, T., Edner, G. & Kihlström, L. Deep and brainstem cavernomas: a consecutive 8-year series. J. Neurosurg. 99, 31–37 (2003).

    PubMed  Google Scholar 

  8. Maraire, J. & Awad, I. Intracranial cavernous malformations: lesion behavior and management strategies. Neurosurgery 37, 591–605 (1995).

    CAS  PubMed  Google Scholar 

  9. Hsu, F. P. K., Rigamonti, D. & Huhn, S. L. in Cavernous Malformations Ch. 8 (eds Awad, I. A. & Barrow, D.) 87–100 (American Association of Neurological Surgeons, 1993).

    Google Scholar 

  10. Zabramski, J. M. et al. The natural history of familial cavernous malformations: results of an ongoing study. J. Neurosurg. 80, 422–432 (1994).

    CAS  PubMed  Google Scholar 

  11. Rigamonti, D. et al. Cerebral cavernous malformations. Incidence and familial occurrence. N. Engl. J. Med. 319, 343–347 (1988).

    CAS  PubMed  Google Scholar 

  12. Moriarity, J. et al. The natural history of cavernous malformations: a prospective study of 68 patients. Neurosurgery 44, 1166–1171 (1999).

    CAS  PubMed  Google Scholar 

  13. McCormick, W. The pathology of vascular (“arteriovenous”) malformations. J. Neurosurg. 24, 807–816 (1966).

    CAS  PubMed  Google Scholar 

  14. McCormick, W., Hardman, J. & Boulter, T. Vascular malformations (“angiomas”) of the brain, with special reference to those occurring in the posterior fossa. J. Neurosurg. 28, 241–251 (1968).

    CAS  PubMed  Google Scholar 

  15. Porter, P., Willinsky, R., Harper, W. & Wallace, M. Cerebral cavernous malformations: natural history and prognosis after clinical deterioration with or without hemorrhage. J. Neurosurg. 87, 190–197 (1997).

    CAS  PubMed  Google Scholar 

  16. Aiba, T. et al. Natural history of intracranial cavernous malformations. J. Neurosurg. 83, 56–59 (1995).

    CAS  PubMed  Google Scholar 

  17. Al-Shahi Salman, R., Berg, M., Morrison, L., Awad, I. & Angioma Alliance Scientific Advisory Board. Hemorrhage from cavernous malformations of the brain: definition and reporting standards. Angioma Alliance Scientific Advisory Board. Stroke 39, 3222–3230 (2008).

    PubMed  Google Scholar 

  18. Del Curling, O. Jr, Kelly, D. L. Jr, Elster, A. D. & Craven, T. E. An analysis of the natural history of cavernous angiomas. J. Neurosurg. 75, 702–708 (1991).

    PubMed  Google Scholar 

  19. Kondziolka, D., Lunsford, L. D. & Kestle, J. R. The natural history of cerebral cavernous malformations. J. Neurosurg. 83, 820–824 (1995).

    CAS  PubMed  Google Scholar 

  20. Scott, R., Barnes, P., Kupsky, W. & Adelman, L. Cavernous angiomas of the central nervous system in children. J. Neurosurg. 76, 38–46 (1992).

    CAS  PubMed  Google Scholar 

  21. Herter, T., Brandt, M. & Szüwart, U. Cavernous hemangiomas in children. Childs Nerv. Syst. 4, 123–127 (1988).

    CAS  PubMed  Google Scholar 

  22. Pozzati, E., Acciarri, N., Tognetti, F., Marliani, F. & Giangaspero, F. Growth, subsequent bleeding, and de novo appearance of cerebral cavernous angiomas. Neurosurgery 38, 662–669 (1996).

    CAS  PubMed  Google Scholar 

  23. Tomlinson, F. H. et al. Angiographically occult vascular malformations: a correlative study of features on magnetic resonance imaging and histological examination. Neurosurgery 34, 792–799 (1994).

    CAS  PubMed  Google Scholar 

  24. Clatterbuck, R., Eberhart, C., Crain, B. & Rigamonti, D. Ultrastructural and immunocytochemical evidence that an incompetent blood–brain barrier is related to the pathophysiology of cavernous malformations. J. Neurol. Neurosurg. Psychiatry 71, 188–192 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Rigamonti, D., Johnson, P., Spetzler, R., Hadley, M. & Drayer, B. Cavernous malformations and capillary telangiectasia: a spectrum within a single pathological entity. Neurosurgery 28, 60–64 (1991).

    CAS  PubMed  Google Scholar 

  26. Baumann, C. et al. Seizure outcome after resection of supratentorial cavernous malformations: a study of 168 patients. Epilepsia 48, 559–563 (2007).

    PubMed  Google Scholar 

  27. Tung, H., Giannotta, S., Chandrasoma, P. & Zee, C. Recurrent intraparenchymal hemorrhages from angiographically occult vascular malformations. J. Neurosurg. 73, 174–180 (1990).

    CAS  PubMed  Google Scholar 

  28. Frischer, J. et al. Cerebral cavernous malformations: congruency of histopathological features with the current clinical definition. J. Neurol. Neurosurg. Psychiatry 79, 783–788 (2008).

    CAS  PubMed  Google Scholar 

  29. Abrahams, N. A. & Prayson, R. A. The role of histopathologic examination of intracranial blood clots removed for hemorrhage of unknown etiology: a clinical pathologic analysis of 31 cases. Ann. Diagn. Pathol. 4, 361–366 (2000).

    CAS  PubMed  Google Scholar 

  30. Abdulrauf, S. I, Kaynar, M. Y & Awad, I. A. A comparison of the clinical profile of cavernous malformations with and without associated venous malformations. Neurosurgery 44, 41–47 (1999).

    CAS  PubMed  Google Scholar 

  31. Amin-Hanjani, S., Ojemann, R. G. & Ogilvy, C. S. in Schmidel & Sweet's Operative Neurosurgical Techniques: Indications. Methods and Results 5th edn Vol. 2 Ch. 91 (eds Schmidek, H. & Roberts, D.) 1307–1324 (Elsevier, Philadelphia, 2006).

    Google Scholar 

  32. Amin-Hanjani, S., Ogilvy, C., Candia, G., Lyons, S. & Chapman, P. Stereotactic radiosurgery for cavernous malformations: Kjellberg's experience with proton beam therapy in 98 cases at the Harvard Cyclotron. Neurosurgery 42, 1229–1236 (1998).

    CAS  PubMed  Google Scholar 

  33. Lee, J. et al. Management of intracranial cavernous malformation in pediatric patients. Childs Nerv. Syst. 24, 321–327 (2008).

    PubMed  Google Scholar 

  34. Awad, I. & Jabbour, P. Cerebral cavernous malformations and epilepsy. Neurosurg. Focus 21, e7 (2006).

    PubMed  Google Scholar 

  35. Moran, N. et al. Supratentorial cavernous haemangiomas and epilepsy: a review of the literature and case series. J. Neurol. Neurosurg. Psychiatry 66, 561–568 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Stavrou, I., Baumgartner, C., Frischer, J., Trattnig, S. & Knosp, E. Long-term seizure control after resection of supratentorial cavernomas: a retrospective single-center study in 53 patients. Neurosurgery 63, 888–896 (2008).

    PubMed  Google Scholar 

  37. Chang, E. et al. Seizure characteristics and control after microsurgical resection of supratentorial cerebral cavernous malformations. Neurosurgery 65, 31–37 (2009).

    PubMed  Google Scholar 

  38. Casazza, M. et al. Supratentorial cavernous angiomas and epileptic seizures: preoperative course and postoperative outcome. Neurosurgery 39, 26–32 (1996).

    CAS  PubMed  Google Scholar 

  39. Noto, S. et al. Management of patients with cavernous angiomas presenting epileptic seizures. Surg. Neurol. 64, 495–498 (2005).

    PubMed  Google Scholar 

  40. Wang, C., Liu, A., Zhang, J., Sun, B. & Zhao, Y. Surgical management of brain-stem cavernous malformations: report of 137 cases. Surg. Neurol. 59, 444–454 (2003).

    PubMed  Google Scholar 

  41. Bergametti, F. et al. Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations. Am. J. Hum. Genet. 76, 42–51 (2005).

    CAS  PubMed  Google Scholar 

  42. Laberge-le Couteulx, S. et al. Truncating mutations in CCM1, encoding KRIT1, cause hereditary cavernous angiomas. Nat. Genet. 23, 189–193 (1999).

    CAS  PubMed  Google Scholar 

  43. Liquori, C. L. et al. Mutations in a gene encoding a novel protein containing a phosphotyrosine-binding domain cause type 2 cerebral cavernous malformations. Am. J. Hum. Genet. 73, 1459–1464 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Liquori, C. L. et al. Low frequency of PDCD10 mutations in a panel of CCM3 probands: potential for a fourth CCM locus. Hum. Mutat. 27, 118 (2006).

    PubMed  Google Scholar 

  45. Gunel, M. et al. A founder mutation as a cause of cerebral cavernous malformation in Hispanic Americans. N. Engl. J. Med. 334, 946–951 (1996).

    CAS  PubMed  Google Scholar 

  46. Zhang, J., Clatterbuck, R. E., Rigamonti, D., Chang, D. D. & Dietz, H. C. Interaction between KRIT1 and ICAP1α infers perturbation of integrin β1-mediated angiogenesis in the pathogenesis of cerebral cavernous malformation. Hum. Mol. Genet. 10, 2953–2960 (2001).

    CAS  PubMed  Google Scholar 

  47. Hilder, T. L. et al. Proteomic identification of the cerebral cavernous malformation signaling complex. J. Proteome Res. 6, 4343–4355 (2007).

    CAS  PubMed  Google Scholar 

  48. Voss, K. et al. CCM3 interacts with CCM2 indicating common pathogenesis for cerebral cavernous malformations. Neurogenetics 8, 249–256 (2007).

    CAS  PubMed  Google Scholar 

  49. Zawistowski, J. S., Serebriiskii, I. G., Lee, M. F., Golemis, E. A. & Marchuk, D. A. KRIT1 association with the integrin-binding protein ICAP-1: a new direction in the elucidation of cerebral cavernous malformations (CCM1) pathogenesis. Hum. Mol. Genet. 11, 389–396 (2002).

    CAS  PubMed  Google Scholar 

  50. Ma, X. et al. PDCD10 interacts with Ste20-related kinase MST4 to promote cell growth and transformation via modulation of the ERK pathway. Mol. Biol. Cell 18, 1965–1978 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Uhlik, M. T. et al. Rac-MEKK3-MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock. Nat. Cell Biol. 5, 1104–1110 (2003).

    CAS  PubMed  Google Scholar 

  52. Chen, J. N. et al. Mutations affecting the cardiovascular system and other internal organs in zebrafish. Development 123, 293–302 (1996).

    CAS  PubMed  Google Scholar 

  53. Stainier, D. Y. et al. Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development 123, 285–292 (1996).

    CAS  PubMed  Google Scholar 

  54. Mably, J. D. et al. Santa and valentine pattern concentric growth of cardiac myocardium in the zebrafish. Development 133, 3139–3146 (2006).

    CAS  PubMed  Google Scholar 

  55. Shenkar, R., Shi, C., Check, I., Lipton, H. & Awad, I. Concepts and hypotheses: inflammatory hypothesis in the pathogenesis of cerebral cavernous malformations. Neurosurgery 61, 693–702 (2007).

    PubMed  Google Scholar 

  56. Shi, C., Shenkar, R., Batjer, H., Check, I. & Awad, I. Oligoclonal immune response in cerebral cavernous malformations. Laboratory investigation. J. Neurosurg. 107, 1023–1026 (2007).

    CAS  PubMed  Google Scholar 

  57. Shi, C. et al. Immune response in human cerebral cavernous malformations. Stroke 40, 1659–1665 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Rigamonti, D. et al. The MRI appearance of cavernous malformations (angiomas). J. Neurosurg. 67, 518–524 (1987).

    CAS  PubMed  Google Scholar 

  59. Bradac, G., Riva, A., Schörner, W. & Stura, G. Cavernous sinus meningiomas: an MRI study. Neuroradiology 29, 578–581 (1987).

    CAS  PubMed  Google Scholar 

  60. Lehnhardt, F. et al. Value of gradient-echo magnetic resonance imaging in the diagnosis of familial cerebral cavernous malformation. Arch. Neurol. 62, 653–658 (2005).

    PubMed  Google Scholar 

  61. Dillon, W. Cryptic vascular malformations: controversies in terminology, diagnosis, pathophysiology, and treatment. AJNR Am. J. Neuroradiol. 18, 1839–1846 (1997).

    CAS  PubMed  Google Scholar 

  62. Rigamonti, D. & Spetzler, R. The association of venous and cavernous malformations. Report of four cases and discussion of the pathophysiological, diagnostic, and therapeutic implications. Acta Neurochir. (Wien) 92, 100–105 (1988).

    CAS  Google Scholar 

  63. Brunereau, L. et al. Familial form of cerebral cavernous malformations: evaluation of gradient-spin-echo (GRASE) imaging in lesion detection and characterization at 1.5 T. Neuroradiology 43, 973–979 (2001).

    CAS  PubMed  Google Scholar 

  64. Lee, B. et al. MR high-resolution blood oxygenation level-dependent venography of occult (low-flow) vascular lesions. AJNR Am. J. Neuroradiol. 20, 1239–1242 (1999).

    CAS  PubMed  Google Scholar 

  65. Schmitz, B. L., Aschoff, A. J., Hoffmann, M. H. & Grön, G. Advantages and pitfalls in 3T MR brain imaging: a pictorial review. AJNR Am. J. Neuroradiol. 26, 2229–2237 (2005).

    PubMed  Google Scholar 

  66. Pinker, K. et al. Improved preoperative evaluation of cerebral cavernomas by high-field, high-resolution susceptibility-weighted magnetic resonance imaging at 3 Tesla: comparison with standard (1.5 T) magnetic resonance imaging and correlation with histopathological findings—preliminary results. Invest. Radiol. 42, 346–351 (2007).

    PubMed  Google Scholar 

  67. Mottolese, C. et al. Central nervous system cavernomas in the pediatric age group. Neurosurg. Rev. 24, 55–71 (2001).

    CAS  PubMed  Google Scholar 

  68. Vanefsky, M. et al. Correlation of magnetic resonance characteristics and histopathological type of angiographically occult vascular malformations. Neurosurgery 44, 1174–1180 (1999).

    CAS  PubMed  Google Scholar 

  69. Willinsky, R. et al. Follow-up MR of intracranial cavernomas. The relationship between haemorrhagic events and morphology. Interv. Neuroradiol. 2, 127–135 (1996).

    CAS  PubMed  Google Scholar 

  70. Yun, T. J. et al. A T1 hyperintense perilesional signal aids in the differentiation of a cavernous angioma from other hemorrhagic masses. AJNR Am. J. Neuroradiol. 29, 494–500 (2008).

    CAS  PubMed  Google Scholar 

  71. Tong, K. A. et al. Susceptibility-weighted MR imaging: a review of clinical applications in children. AJNR Am. J. Neuroradiol. 29, 9–17 (2008).

    CAS  PubMed  Google Scholar 

  72. Kharkar, S., Shuck, J., Conway, J. & Rigamonti, D. The natural history of conservatively managed symptomatic intramedullary spinal cord cavernomas. Neurosurgery 60, 865–872 (2007).

    PubMed  Google Scholar 

  73. Kim, D., Park, Y., Choi, J., Chung, S. & Lee, K. An analysis of the natural history of cavernous malformations. Surg. Neurol. 48, 9–17 (1997).

    CAS  PubMed  Google Scholar 

  74. Labauge, P., Brunereau, L., Laberge, S. & Houtteville, J. Prospective follow-up of 33 asymptomatic patients with familial cerebral cavernous malformations. Neurology 57, 1825–1828 (2001).

    CAS  PubMed  Google Scholar 

  75. Brunereau, L. et al. Familial form of intracranial cavernous angioma: MR imaging findings in 51 families. French Society of Neurosurgery. Radiology 214, 209–216 (2000).

    CAS  PubMed  Google Scholar 

  76. Denier, C. et al. Genotype–phenotype correlations in cerebral cavernous malformations patients. Ann. Neurol. 60, 550–556 (2006).

    PubMed  Google Scholar 

  77. Simard, J., Garcia-Bengochea, F., Ballinger, W. J., Mickle, J. & Quisling, R. Cavernous angioma: a review of 126 collected and 12 new clinical cases. Neurosurgery 18, 162–172 (1986).

    CAS  PubMed  Google Scholar 

  78. Duffau, H. et al. Early radiologically proven rebleeding from intracranial cavernous angiomas: report of 6 cases and review of the literature. Acta Neurochir. (Wien) 139, 914–922 (1997).

    CAS  Google Scholar 

  79. Barker, F. G. 2nd et al. Temporal clustering of hemorrhages from untreated cavernous malformations of the central nervous system. Neurosurgery 49, 15–24 (2001).

    PubMed  Google Scholar 

  80. Kupersmith, M. et al. Natural history of brainstem cavernous malformations. Neurosurgery 48, 47–53 (2001).

    CAS  PubMed  Google Scholar 

  81. Porter, R. et al. Cavernous malformations of the brainstem: experience with 100 patients. J. Neurosurg. 90, 50–58 (1999).

    CAS  PubMed  Google Scholar 

  82. Bruneau, M. et al. Early surgery for brainstem cavernomas. Acta Neurochir. (Wien) 148, 405–414 (2006).

    CAS  Google Scholar 

  83. Ferroli, P. et al. Brainstem cavernomas: long-term results of microsurgical resection in 52 patients. Neurosurgery 56, 1203–1212 (2005).

    PubMed  Google Scholar 

  84. Fritschi, J., Reulen, H., Spetzler, R. & Zabramski, J. Cavernous malformations of the brain stem. A review of 139 cases. Acta Neurochir. (Wien) 130, 35–46 (1994).

    CAS  Google Scholar 

  85. Zimmerman, R. S., Spetzler, R. F., Lee, K. S., Zabramski, J. M. & Hargraves, R. W. Cavernous malformations of the brain stem. J. Neurosurg. 75, 32–39 (1991).

    CAS  PubMed  Google Scholar 

  86. Pozzati, E., Zucchelli, M., Marliani, A. & Riccioli, L. Bleeding of a familial cerebral cavernous malformation after prophylactic anticoagulation therapy. Case report. Neurosurg. Focus 21, e15 (2006).

    PubMed  Google Scholar 

  87. Chibbaro, S. & Tacconi, L. Safety of deep venous thrombosis prophylaxis with low-molecular-weight heparin in brain surgery. Prospective study on 746 patients. Surg. Neurol. 70, 117–121 (2008).

    PubMed  Google Scholar 

  88. Churchyard, A., Khangure, M. & Grainger, K. Cerebral cavernous angioma: a potentially benign condition? Successful treatment in 16 cases. J. Neurol. Neurosurg. Psychiatry 55, 1040–1045 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Ferroli, P. et al. Cerebral cavernomas and seizures: a retrospective study on 163 patients who underwent pure lesionectomy. Neurol. Sci. 26, 390–394 (2006).

    CAS  PubMed  Google Scholar 

  90. Cohen, D., Zubay, G. & Goodman, R. Seizure outcome after lesionectomy for cavernous malformations. J. Neurosurg. 83, 237–242 (1995).

    CAS  PubMed  Google Scholar 

  91. Baumann, C. et al. Seizure outcome after resection of cavernous malformations is better when surrounding hemosiderin-stained brain also is removed. Epilepsia 47, 563–566 (2006).

    PubMed  Google Scholar 

  92. Stefan, H. & Hammen, T. Cavernous haemangiomas, epilepsy and treatment strategies. Acta Neurol. Scand. 110, 393–397 (2004).

    CAS  PubMed  Google Scholar 

  93. Paolini, S. et al. Drug-resistant temporal lobe epilepsy due to cavernous malformations. Neurosurg. Focus 21, e8 (2006).

    PubMed  Google Scholar 

  94. Cappabianca, P. et al. Supratentorial cavernous malformations and epilepsy: seizure outcome after lesionectomy on a series of 35 patients. Clin. Neurol. Neurosurg. 99, 179–183 (1997).

    CAS  PubMed  Google Scholar 

  95. Siegel, A., Roberts, D., Harbaugh, R. & Williamson, P. Pure lesionectomy versus tailored epilepsy surgery in treatment of cavernous malformations presenting with epilepsy. Neurosurg. Rev. 23, 80–83 (2000).

    CAS  PubMed  Google Scholar 

  96. Stefan, H. et al. Magnetoencephalography (MEG) predicts focal epileptogenicity in cavernomas. J. Neurol. Neurosurg. Psychiatry 75, 1309–1313 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Cascino, G. Neuroimaging in epilepsy: diagnostic strategies in partial epilepsy. Semin. Neurol. 28, 523–532 (2008).

    PubMed  Google Scholar 

  98. Gross, B., Batjer, H., Awad, I. & Bendok, B. Brainstem cavernous malformations. Neurosurgery 64, e805–e818 (2009).

    PubMed  Google Scholar 

  99. Samii, M., Eghbal, R., Carvalho, G. A. & Matthies, C. Surgical management of brainstem cavernomas. J. Neurosurg. 95, 825–832 (2001).

    CAS  PubMed  Google Scholar 

  100. de Oliveira, J., Rassi-Neto, A., Ferraz, F. & Braga, F. Neurosurgical management of cerebellar cavernous malformations. Neurosurg. Focus 21, e11 (2006).

    PubMed  Google Scholar 

  101. D'Angelo, V. et al. Supratentorial cerebral cavernous malformations: clinical, surgical, and genetic involvement. Neurosurg. Focus 21, e9 (2006).

    PubMed  Google Scholar 

  102. Jallo, G., Freed, D., Zareck, M., Epstein, F. & Kothbauer, K. Clinical presentation and optimal management for intramedullary cavernous malformations. Neurosurg. Focus 21, e10 (2006).

    PubMed  Google Scholar 

  103. Pham, M., Gross, B. A, Bendok, B. R, Awad, I. & Batjer, H. Radiosurgery for angiographically occult vascular malformations. Neurosurg. Focus 26, e16 (2009).

    PubMed  Google Scholar 

  104. Liscák, R., Vladyka, V., Simonová, G., Vymazal, J. & Novotny, J. J. Gamma knife surgery of brain cavernous hemangiomas. J. Neurosurg. 102 (Suppl.), 207–213 (2005).

    PubMed  Google Scholar 

  105. Liu, K. et al. Gamma knife surgery for cavernous hemangiomas: an analysis of 125 patients. J. Neurosurg. 102 (Suppl.), 81–86 (2005).

    PubMed  Google Scholar 

  106. Chang, S. et al. Stereotactic radiosurgery of angiographically occult vascular malformations: 14-year experience. Neurosurgery 43, 213–220 (1998).

    CAS  PubMed  Google Scholar 

  107. Kida, Y., Kobayashi, T. & Tanaka, T. Treatment of symptomatic AOVMs with radiosurgery. Acta Neurochir. Suppl. 63, 68–72 (1995).

    CAS  PubMed  Google Scholar 

  108. Pollock, B. E. et al. Stereotactic radiosurgery for cavernous malformations. J. Neurosurg. 93, 987–991 (2000).

    CAS  PubMed  Google Scholar 

  109. Régis, J. et al. Radiosurgery for epilepsy associated with cavernous malformation: retrospective study in 49 patients. Neurosurgery 47, 1091–1097 (2000).

    PubMed  Google Scholar 

  110. Hasegawa, T. et al. Long-term results after stereotactic radiosurgery for patients with cavernous malformations. Neurosurgery 50, 1190–1197 (2002).

    PubMed  Google Scholar 

  111. Zhang, J., Clatterbuck, R. E., Rigamonti, D. & Dietz, H. C. Cloning of the murine Krit1 cDNA reveals novel mammalian 5′ coding exons. Genomics 70, 392–395 (2000).

    CAS  PubMed  Google Scholar 

  112. Zhang, J., Basu, S., Rigamonti, D., Dietz, H. C. & Clatterbuck, R. E. Krit1 modulates β1-integrin-mediated endothelial cell proliferation. Neurosurgery 63, 571–578 (2008).

    PubMed  Google Scholar 

  113. Czubayko, M., Knauth, P., Schluter, T., Florian, V. & Bohnensack, R. Sorting nexin 17, a non-self-assembling and a PtdIns(3)P high class affinity protein, interacts with the cerebral cavernous malformation related protein KRIT1. Biochem. Biophys. Res. Commun. 345, 1264–1272 (2006).

    CAS  PubMed  Google Scholar 

  114. Francalanci, F. et al. Structural and functional differences between KRIT1A and KRIT1B isoforms: a framework for understanding CCM pathogenesis. Exp. Cell Res. 315, 285–303 (2009).

    CAS  PubMed  Google Scholar 

  115. Berman, J. R. & Kenyon, C. Germ-cell loss extends C. elegans life span through regulation of DAF-16 by kri-1 and lipophilic-hormone signaling. Cell 124, 1055–1068 (2006).

    CAS  PubMed  Google Scholar 

  116. Bouvard, D. et al. Disruption of focal adhesions by integrin cytoplasmic domain-associated protein-1α. J. Biol. Chem. 278, 6567–6574 (2003).

    CAS  PubMed  Google Scholar 

  117. Fournier, H. N. et al. Nuclear translocation of integrin cytoplasmic domain-associated protein 1 stimulates cellular proliferation. Mol. Biol. Cell 16, 1859–1871 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Hogan, B. M., Bussmann, J., Wolburg, H. & Schulte-Merker, S. Ccm1 cell autonomously regulates endothelial cellular morphogenesis and vascular tubulogenesis in zebrafish. Hum. Mol. Genet. 17, 2424–2432 (2008).

    CAS  PubMed  Google Scholar 

  119. Whitehead, K. J., Plummer, N. W., Adams, J. A., Marchuk, D. A. & Li, D. Y. Ccm1 is required for arterial morphogenesis: implications for the etiology of human cavernous malformations. Development 131, 1437–1448 (2004).

    CAS  PubMed  Google Scholar 

  120. Jin, S.-W. et al. A transgene-assisted genetic screen identifies essential regulators of vascular development in vertebrate embryos. Dev. Biol. 307, 29–42 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Kleaveland, B. et al. Regulation of cardiovascular development and integrity by the heart of glass-cerebral cavernous malformation protein pathway. Nat. Med. 15, 169–176 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Whitehead, K. J. et al. The cerebral cavernous malformation signaling pathway promotes vascular integrity via Rho GTPases. Nat. Med. 15, 177–184 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Salisbury Family Foundation and the Monica and Hermen Greenberg Foundation.

Désirée Lie, University of California, Orange, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Rigamonti.

Ethics declarations

Competing interests

The authors, the Journal Editor H. Wood and the CME questions author D. Lie declare no competing interests

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batra, S., Lin, D., Recinos, P. et al. Cavernous malformations: natural history, diagnosis and treatment. Nat Rev Neurol 5, 659–670 (2009). https://doi.org/10.1038/nrneurol.2009.177

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2009.177

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing