Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Enteric nervous system development and Hirschsprung's disease: advances in genetic and stem cell studies

Key Points

  • The enteric nervous system (ENS) operates essentially independently of the CNS to regulate the complex behaviours of the gut, including the regulation of smooth muscle contractions to generate peristalsis and mixing movements, and the control of secretions from its glands.

  • The ENS derives from migratory enteric neural crest-derived cells (ENCCs), which originate primarily from the vagal region of the neural tube (although sacral neural crest cells also contribute to the ENS of the midgut and hindgut).

  • During migration stages, the ENS is a heterogeneous mix of proliferating precursors and progressively differentiating neurons and glial cells.

  • The most common and best understood congenital defect in ENS development is Hirschsprung's disease (HSCR), which occurs in 1:5,000 births and is characterized by the absence of enteric ganglia in distal portions of the gut. The current treatment is surgical, and although generally successful, the functional outcome is variable.

  • Many genetic regulators of ENS development have been identified through a combination of human genetic studies to identify mutations underlying HSCR, and studies in animal models such as mice and zebrafish. Mutations in the RET receptor tyrosine kinase account for most HSCR cases, and loss of Ret in both mice and zebrafish leads to a lack enteric neurons throughout most of the gut.

  • The activity of the glial cell-line-derived neurotrophic factor (GDNF)–RET–GDNF family receptor α1 (GFRα1) and endothelin 3 (EDN3)–EDN receptor B (EDNRB) signalling pathways and the transcription factor SOX10 are all required during ENS development. ENCCs express the receptors RET, GFRα1 and EDNRB, as well as SOX10, whereas the gut mesenchyme expresses the ligands GDNF and EDN3.

  • Genetic studies in both humans and mice have identified genetic interactions between RET and EDNRB, and EDNRB and SOX10. Although protein kinase A has been suggested to mediate the interaction between RET and EDNRB, the true nature of the interactions between the various regulators of ENS development remains unknown.

  • New regulators of ENS development continue to be identified through human genetic studies of populations and of isolated cases, analysis of mouse mutants, and genetic screens in mice and zebrafish. In parallel, expression profiling of the ENS, for example through microarray analysis, highlights candidate ENS regulators.

  • A growing number of studies aim to identify ENS stem cells (ENSCs), and in certain cases a self-renewing multipotent ENS-derived population has been identified which, when allowed to differentiate, is capable of recapitulating the normal profile of progressive ENS differentiation. A long-term aim of these studies is the development of stem cell replacement therapies, which may provide an alternative to surgical treatment for HSCR.

  • ENSCs have been isolated from murine HSCR model gut tissue, and ENS precursor cells have been isolated from the tissue of patients with HSCR. These results establish an important point of principle: that an HSCR patient's own tissue could be used as the starting material to generate ENSCs for cell transplantation therapy.

  • The cell transplantation models developed to date involve injecting small numbers of ENS precursor cells or ENSCs into murine tissues, either wild-type or HSCR models, or into the gut of wild-type or HSCR model postnatal animals. The successful migration and differentiation of transplanted cells has offered encouragement that such models are worthy of further exploration.

Abstract

The enteric nervous system (ENS) has been explored by developmental neurobiologists and medical researchers for decades. Whereas developmental biologists have been unravelling the molecular mechanisms underlying the migration, proliferation and differentiation of the neural crest derivatives that give rise to the ENS, human geneticists have been uncovering the genetic basis for diseases of the ENS, notably Hirschsprung's disease. Here we discuss the exciting recent advances, including novel transgenic and genetic tools, a broadening range of model organisms, and the pursuit of ENS stem cells as a therapeutic tool, that are bringing these fields closer together.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of a transverse section through the small intestine.
Figure 2: Sources, migratory routes and gene expression in neural crest cells contributing to the ENS.
Figure 3: ENS phenotypes of mouse mutant lines.
Figure 4: Signalling through the RET and EDNRB receptors regulates aspects of ENS development.
Figure 5: Differentiation of enteric neural stem cells (ENSCs) follows a normal ENS developmental profile.

Similar content being viewed by others

References

  1. Furness, J. B., Jones, C., Nurgali, K. & Clerc, N. Intrinsic primary afferent neurons and nerve circuits within the intestine. Prog. Neurobiol. 72, 143–164 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Newgreen, D. & Young, H. M. Enteric nervous system: development and developmental disturbances — part 1. Pediatr. Dev. Pathol. 5, 224–247 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Newgreen, D. & Young, H. M. Enteric nervous system: development and developmental disturbances — part 2. Pediatr. Dev. Pathol. 5, 329–349 (2002).

    Article  PubMed  Google Scholar 

  4. Gershon, M. D. Genes and lineages in the formation of the enteric nervous system. Curr. Opin. Neurobiol. 7, 101–109 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Gershon, M. D. & Ratcliffe, E. M. Developmental biology of the enteric nervous system: pathogenesis of Hirschsprung's disease and other congenital dysmotilities. Semin. Pediatr. Surg. 13, 224–235 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ward, S. M. & Sanders, K. M. Involvement of intramuscular interstitial cells of Cajal in neuroeffector transmission in the gastrointestinal tract. J. Physiol. 576, 675–682 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Burns, A. J., Champeval, D. & Le Douarin, N. M. Sacral neural crest cells colonise aganglionic hindgut in vivo but fail to compensate for lack of enteric ganglia. Dev. Biol. 219, 30–43 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Durbec, P. L., Larsson-Blomberg, L. B., Schuchardt, A., Costantini, F. & Pachnis, V. Common origin and developmental dependence on c-ret of subsets of enteric and sympathetic neuroblasts. Development 122, 349–358 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Druckenbrod, N. R. & Epstein, M. L. The pattern of neural crest advance in the cecum and colon. Dev. Biol. 287, 125–133 (2005). Time-lapse video microscopy is used (as in references 13 and 14) to track the behaviour of ENCCs during migration through the developing gut. These studies beautifully capture the migration of ENS precursors and provide insights into the interactions between migrating ENCCs.

    Article  CAS  PubMed  Google Scholar 

  10. Fu, M., Chi Hang Lui, V., Har Sham, M., Nga Yin Cheung, A. & Kwong Hang Tam, P. HOXB5 expression is spatially and temporarily regulated in human embryonic gut during neural crest cell colonization and differentiation of enteric neuroblasts. Dev. Dyn. 228, 1–10 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Kapur, R. P. Colonization of the murine hindgut by sacral crest-derived neural precursors: experimental support for an evolutionarily conserved model. Dev. Biol. 227, 146–155 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Burns, A. J. & Douarin, N. M. The sacral neural crest contributes neurons and glia to the post-umbilical gut: spatiotemporal analysis of the development of the enteric nervous system. Development 125, 4335–4347 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Young, H. M. et al. Dynamics of neural crest-derived cell migration in the embryonic mouse gut. Dev. Biol. 270, 455–473 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Druckenbrod, N. R. & Epstein, M. L. Behavior of enteric neural crest-derived cells varies with respect to the migratory wavefront. Dev. Dyn. 236, 84–92 (2007).

    Article  PubMed  Google Scholar 

  15. Young, H. M., Turner, K. N. & Bergner, A. J. The location and phenotype of proliferating neural-crest-derived cells in the developing mouse gut. Cell Tissue Res. 320, 1–9 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Gianino, S., Grider, J. R., Cresswell, J., Enomoto, H. & Heuckeroth, R. O. GDNF availability determines enteric neuron number by controlling precursor proliferation. Development 130, 2187–2198 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Simpson, M. J., Zhang, D. C., Mariani, M., Landman, K. A. & Newgreen, D. F. Cell proliferation drives neural crest cell invasion of the intestine. Dev. Biol. 302, 553–568 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Sidebotham, E. L. et al. Localization and endothelin-3 dependence of stem cells of the enteric nervous system in the embryonic colon. J. Pediatr. Surg. 37, 145–150 (2002).

    Article  PubMed  Google Scholar 

  19. Stanchina, L. et al. Interactions between Sox10, Edn3 and Ednrb during enteric nervous system and melanocyte development. Dev. Biol. 295, 232–249 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Furness, J. B. Types of neurons in the enteric nervous system. J. Auton. Nerv. Syst. 81, 87–96 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Grundy, D. et al. Fundamentals of neurogastroenterology: basic science. Gastroenterology 130, 1391–1411 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Young, H. M., Bergner, A. J. & Muller, T. Acquisition of neuronal and glial markers by neural crest-derived cells in the mouse intestine. J. Comp. Neurol. 456, 1–11 (2003).

    Article  PubMed  Google Scholar 

  23. Baetge, G. & Gershon, M. D. Transient catecholaminergic (TC) cells in the vagus nerves and bowel of fetal mice: relationship to the development of enteric neurons. Dev. Biol. 132, 189–211 (1989).

    Article  CAS  PubMed  Google Scholar 

  24. Pham, T. D., Gershon, M. D. & Rothman, T. P. Time of origin of neurons in the murine enteric nervous system: sequence in relation to phenotype. J. Comp. Neurol. 314, 789–798 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Rothman, T. P., Tennyson, V. M. & Gershon, M. D. Colonization of the bowel by the precursors of enteric glia: studies of normal and congenitally aganglionic mutant mice. J. Comp. Neurol. 252, 493–506 (1986).

    Article  CAS  PubMed  Google Scholar 

  26. Young, H. M., Jones, B. R. & McKeown, S. J. The projections of early enteric neurons are influenced by the direction of neural crest cell migration. J. Neurosci. 22, 6005–6018 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sang, Q. & Young, H. M. Chemical coding of neurons in the myenteric plexus and external muscle of the small and large intestine of the mouse. Cell Tissue Res. 284, 39–53 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Wonders, C. P. & Anderson, S. A. The origin and specification of cortical interneurons. Nature Rev. Neurosci. 7, 687–696 (2006).

    Article  CAS  Google Scholar 

  29. Chakravarti, A. in The Metabolic and Molecular Basis of Inherited Diseases (eds Scriver, C. R. et al.) 6231–6255 (McGraw-Hill, New York, 2001).

    Google Scholar 

  30. Brooks, A. S., Oostra, B. A. & Hofstra, R. M. Studying the genetics of Hirschsprung's disease: unraveling an oligogenic disorder. Clin. Genet. 67, 6–14 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Amiel, J. & Lyonnet, S. Hirschsprung disease, associated syndromes, and genetics: a review. J. Med. Genet. 38, 729–739 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Baillie, C. T., Kenny, S. E., Rintala, R. J., Booth, J. M. & Lloyd, D. A. Long-term outcome and colonic motility after the Duhamel procedure for Hirschsprung's disease. J. Pediatr. Surg. 34, 325–329 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Menezes, M., Corbally, M. & Puri, P. Long-term results of bowel function after treatment for Hirschsprung's disease: a 29-year review. Pediatr. Surg. Int. 22, 987–990 (2006).

    Article  PubMed  Google Scholar 

  34. Griseri, P. et al. A common variant located in the 3′UTR of the RET gene is associated with protection from Hirschsprung disease. Hum. Mutat. 28, 168–176 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Emison, E. S. et al. A common sex-dependent mutation in a RET enhancer underlies Hirschsprung disease risk. Nature 434, 857–863 (2005). Family-based association studies identified a non-coding variant of RET in the 3′ enhancer region which is significantly associated with HSCR susceptibility. These and other studies (such as reference 34) have lead to the idea that coding and/or non-coding mutations in RET impart susceptibility to HSCR in all cases.

    Article  CAS  PubMed  Google Scholar 

  36. Schuchardt, A., D'Agati, V., Larsson-Blomberg, L., Costantini, F. & Pachnis, V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367, 380–383 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Shepherd, I. T., Pietsch, J., Elworthy, S., Kelsh, R. N. & Raible, D. W. Roles for GFRα1 receptors in zebrafish enteric nervous system development. Development 131, 241–249 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Sanchez, M. P. et al. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382, 70–73 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Pichel, J. G. et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382, 73–76 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Moore, M. W. et al. Renal and neuronal abnormalities in mice lacking GDNF. Nature 382, 76–79 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Cacalano, G. et al. GFRα1 is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron 21, 53–62 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shepherd, I. T., Beattie, C. E. & Raible, D. W. Functional analysis of zebrafish GDNF. Dev. Biol. 231, 420–435 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Angrist, M., Bolk, S., Halushka, M., Lapchak, P. A. & Chakravarti, A. Germline mutations in glial cell line-derived neurotrophic factor (GDNF) and RET in a Hirschsprung disease patient. Nature Genet. 14, 341–344 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Taraviras, S. et al. Signalling by the RET receptor tyrosine kinase and its role in the development of the mammalian enteric nervous system. Development 126, 2785–2797 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Young, H. M. et al. GDNF is a chemoattractant for enteric neural cells. Dev. Biol. 229, 503–516 (2001). The chemoattractive effect of GDNF on Ret -expressing enteric neurons is demonstrated in organ-culture experiments. This study (along with reference 45) helped establish that the absence of ENS in distal gut regions in Ret, Gfra1 and Gdnf mutant mice or loss-of-function zebrafish (see references 36–42) can be attributed, in part, to a defect in ENCC migration.

    Article  CAS  PubMed  Google Scholar 

  46. Natarajan, D., Marcos-Gutierrez, C., Pachnis, V. & de Graaff, E. Requirement of signalling by receptor tyrosine kinase RET for the directed migration of enteric nervous system progenitor cells during mammalian embryogenesis. Development 129, 5151–5160 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Shen, L. et al. Gdnf haploinsufficiency causes Hirschsprung-like intestinal obstruction and early-onset lethality in mice. Am. J. Hum. Genet. 70, 435–447 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Flynn, B., Bergner, A. J., Turner, K. N., Young, H. M. & Anderson, R. B. Effect of Gdnf haploinsufficiency on rate of migration and number of enteric neural crest-derived cells. Dev. Dyn. 236, 134–141 (2007).

    Article  PubMed  Google Scholar 

  49. Hearn, C. J., Murphy, M. & Newgreen, D. GDNF and ET-3 differentially modulate the numbers of avian enteric neural crest cells and enteric neurons in vitro. Dev. Biol. 197, 93–105 (1998). This series of elegant experiments in the chick identified key functions of EDN3 in ENS development. Importantly, EDN3 was shown to inhibit neuronal differentiation of EDNRB -expressing neural crest-derived cells, leading to the concept that EDN3/EDNRB functions to maintain ENCCs in a proliferative precursor state, thereby allowing complete colonization of the bowel, a model that was further supported by additional mouse studies (see references 69 and 71).

    Article  CAS  PubMed  Google Scholar 

  50. Takahashi, M. The GDNF/RET signaling pathway and human diseases. Cytokine Growth Factor Rev. 12, 361–373 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. de Graaff, E. et al. Differential activities of the RET tyrosine kinase receptor isoforms during mammalian embryogenesis. Genes Dev. 15, 2433–2444 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jain, S., Encinas, M., Johnson, E. M. Jr & Milbrandt, J. Critical and distinct roles for key RET tyrosine docking sites in renal development. Genes Dev. 20, 321–333 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wong, A. et al. Phosphotyrosine 1062 is critical for the in vivo activity of the Ret9 receptor tyrosine kinase isoform. Mol. Cell. Biol. 25, 9661–9673 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Asai, N. et al. Targeted mutation of serine 697 in the Ret tyrosine kinase causes migration defect of enteric neural crest cells. Development 133, 4507–4516 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Plaza-Menacho, I., Burzynski, G. M., de Groot, J. W., Eggen, B. J. & Hofstra, R. M. Current concepts in RET-related genetics, signaling and therapeutics. Trends Genet. 22, 627–636 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Ito, S. et al. Biological properties of Ret with cysteine mutations correlate with multiple endocrine neoplasia type 2A, familial medullary thyroid carcinoma, and Hirschsprung's disease phenotype. Cancer Res. 57, 2870–2872 (1997).

    CAS  PubMed  Google Scholar 

  57. Carniti, C. et al. The Ret(C620R) mutation affects renal and enteric development in a mouse model of Hirschsprung's disease. Am. J. Pathol. 168, 1262–1275 (2006). Mice engineered to carry a Ret mutation observed in MEN2A and HSCR display total intestinal aganglionosis. This study demonstrates the remarkable potential for mouse transgenics to model human HSCR mutations, or to dissect Ret signalling pathways (see reference 54).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Heuckeroth, R. O. et al. Gene targeting reveals a critical role for neurturin in the development and maintenance of enteric, sensory, and parasympathetic neurons. Neuron 22, 253–263 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Rossi, J. et al. Alimentary tract innervation deficits and dysfunction in mice lacking GDNF family receptor α2. J. Clin. Invest. 112, 707–716 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Doray, B. et al. Mutation of the RET ligand, neurturin, supports multigenic inheritance in Hirschsprung disease. Hum. Mol. Genet. 7, 1449–1452 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Baynash, A. G. et al. Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell 79, 1277–1285 (1994).

    Article  CAS  PubMed  Google Scholar 

  62. Hosoda, K. et al. Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell 79, 1267–1276 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. Yanagisawa, H. et al. Dual genetic pathways of endothelin-mediated intercellular signaling revealed by targeted disruption of endothelin converting enzyme-1 gene. Development 125, 825–836 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Barlow, A., de Graaff, E. & Pachnis, V. Enteric nervous system progenitors are coordinately controlled by the G protein-coupled receptor EDNRB and the receptor tyrosine kinase RET. Neuron 40, 905–916 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Leibl, M. A. et al. Expression of endothelin 3 by mesenchymal cells of embryonic mouse caecum. Gut 44, 246–252 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee, H. O., Levorse, J. M. & Shin, M. K. The endothelin receptor-B is required for the migration of neural crest-derived melanocyte and enteric neuron precursors. Dev. Biol. 259, 162–175 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Ro, S., Hwang, S. J., Muto, M., Jewett, W. K. & Spencer, N. J. Anatomic modifications in the enteric nervous system of piebald mice and physiological consequences to colonic motor activity. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G710–G718 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Shin, M. K., Levorse, J. M., Ingram, R. S. & Tilghman, S. M. The temporal requirement for endothelin receptor-B signalling during neural crest development. Nature 402, 496–501 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Bondurand, N., Natarajan, D., Barlow, A., Thapar, N. & Pachnis, V. Maintenance of mammalian enteric nervous system progenitors by SOX10 and endothelin 3 signalling. Development 133, 2075–2086 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Nagy, N. & Goldstein, A. M. Endothelin-3 regulates neural crest cell proliferation and differentiation in the hindgut enteric nervous system. Dev. Biol. 293, 203–217 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Wu, J. J., Chen, J. X., Rothman, T. P. & Gershon, M. D. Inhibition of in vitro enteric neuronal development by endothelin-3: mediation by endothelin B receptors. Development 126, 1161–1173 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. McCallion, A. S. et al. Genomic variation in multigenic traits: Hirschsprung disease. Cold Spring Harb. Symp. Quant. Biol. 68, 373–381 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Herbarth, B. et al. Mutation of the Sry-related Sox10 gene in Dominant megacolon, a mouse model for human Hirschsprung disease. Proc. Natl Acad. Sci. USA 95, 5161–5165 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Southard-Smith, E. M., Kos, L. & Pavan, W. J. SOX10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nature Genet. 18, 60–64 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Dutton, K. A. et al. Zebrafish colourless encodes sox10 and specifies non-ectomesenchymal neural crest fates. Development 128, 4113–4125 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Bondurand, N., Natarajan, D., Thapar, N., Atkins, C. & Pachnis, V. Neuron and glia generating progenitors of the mammalian enteric nervous system isolated from foetal and postnatal gut cultures. Development 130, 6387–6400 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Britsch, S. et al. The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev. 15, 66–78 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Paratore, C., Eichenberger, C., Suter, U. & Sommer, L. Sox10 haploinsufficiency affects maintenance of progenitor cells in a mouse model of Hirschsprung disease. Hum. Mol. Genet. 11, 3075–3085 (2002). Analysis of Sox10 heterozygous mice reveals that ENCCs lose their progenitor state and acquire neural precursor characteristics, such as Ret expression. This study clearly identifies a role for SOX10 in the maintenance of ENS progenitor cells, and suggests that, in Sox10 mutant mice, aganglionosis is caused by a reduction in ENS precursors.

    Article  CAS  PubMed  Google Scholar 

  79. Kelsh, R. N. Sorting out Sox10 functions in neural crest development. Bioessays 28, 788–798 (2006).

    Article  PubMed  Google Scholar 

  80. Benailly, H. K. et al. PMX2B, a new candidate gene for Hirschsprung's disease. Clin. Genet. 64, 204–209 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Wakamatsu, N. et al. Mutations in SIP1, encoding Smad interacting protein-1, cause a form of Hirschsprung disease. Nature Genet. 27, 369–370 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Pattyn, A., Morin, X., Cremer, H., Goridis, C. & Brunet, J. F. The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 399, 366–370 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Elworthy, S., Pinto, J. P., Pettifer, A., Cancela, M. L. & Kelsh, R. N. Phox2b function in the enteric nervous system is conserved in zebrafish and is sox10-dependent. Mech. Dev. 122, 659–669 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Van de Putte, T. et al. Mice lacking ZFHX1B, the gene that codes for Smad-interacting protein-1, reveal a role for multiple neural crest cell defects in the etiology of Hirschsprung disease-mental retardation syndrome. Am. J. Hum. Genet. 72, 465–470 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Brooks, A. S. et al. Homozygous nonsense mutations in KIAA1279 are associated with malformations of the central and enteric nervous systems. Am. J. Hum. Genet. 77, 120–126 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Carrasquillo, M. M. et al. Genome-wide association study and mouse model identify interaction between RET and EDNRB pathways in Hirschsprung disease. Nature Genet. 32, 237–244 (2002). An excellent example of the usefulness of genetically isolated Old Order Mennonite populations for genome-wide association studies, which in this case identified three HSCR susceptibility loci: 10q11 ( EDNRB ), 13q22 ( RET ) and 16q23, and provided evidence for interactions between the RET and EDNRB loci, which have been subsequently verified by other studies (see references 64 and 87).

    Article  CAS  PubMed  Google Scholar 

  87. McCallion, A. S., Stames, E., Conlon, R. A. & Chakravarti, A. Phenotype variation in two-locus mouse models of Hirschsprung disease: tissue-specific interaction between Ret and Ednrb. Proc. Natl Acad. Sci. USA 100, 1826–1831 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kruger, G. M. et al. Temporally distinct requirements for endothelin receptor B in the generation and migration of gut neural crest stem cells. Neuron 40, 917–929 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Howe, D. G. et al. Inhibition of protein kinase A in murine enteric neurons causes lethal intestinal pseudo-obstruction. J. Neurobiol. 66, 256–272 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Cantrell, V. A. et al. Interactions between Sox10 and EdnrB modulate penetrance and severity of aganglionosis in the Sox10Dom mouse model of Hirschsprung disease. Hum. Mol. Genet. 13, 2289–2301 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Zhu, L. et al. Spatiotemporal regulation of endothelin receptor-B by SOX10 in neural crest-derived enteric neuron precursors. Nature Genet. 36, 732–737 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Lang, D. & Epstein, J. A. Sox10 and Pax3 physically interact to mediate activation of a conserved c-RET enhancer. Hum. Mol. Genet. 12, 937–945 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Owens, S. E. et al. Genome-wide linkage identifies novel modifier loci of aganglionosis in the Sox10Dom model of Hirschsprung disease. Hum. Mol. Genet. 14, 1549–1558 (2005). Strain-dependent variation in penetrance and expressivity of aganglionosis was observed in Sox10Dom mice, and a single nucleotide polymorphism-based genome screen in Sox10Dom F1 intercross progeny identified five modifier loci on chromosomes 3, 5, 8, 11 and 14, thus identifying Ednrb , possibly Phox2b , and three novel susceptibility loci. This study demonstrates that genome-wide linkage studies in mice, as with those in humans, are powerful tools.

    Article  CAS  PubMed  Google Scholar 

  94. Bolk, S. et al. A human model for multigenic inheritance: phenotypic expression in Hirschsprung disease requires both the RET gene and a new 9q31 locus. Proc. Natl Acad. Sci. USA 97, 268–273 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Brooks, A. S. et al. A novel susceptibility locus for Hirschsprung's disease maps to 4q31.s3–q32.3. J. Med. Genet. 43, e35 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gabriel, S. B. et al. Segregation at three loci explains familial and population risk in Hirschsprung disease. Nature Genet. 31, 89–93 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Heanue, T. A. & Pachnis, V. Expression profiling the developing mammalian enteric nervous system identifies marker and candidate Hirschsprung disease genes. Proc. Natl Acad. Sci. USA 103, 6919–6924 (2006). Expression profiling of the ENS (see also references 72 and 98) using DNA microarrays or real-time PCR allows characterization of the ENS transcriptome, identification of candidate HSCR susceptibility loci, and establishes genes of interest for functional studies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Vohra, B. P. et al. Differential gene expression and functional analysis implicate novel mechanisms in enteric nervous system precursor migration and neuritogenesis. Dev. Biol. 298, 259–271 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lang, D. et al. Pax3 is required for enteric ganglia formation and functions with Sox10 to modulate expression of c-ret. J. Clin. Invest. 106, 963–971 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jiang, Y., Liu, M. T. & Gershon, M. D. Netrins and DCC in the guidance of migrating neural crest-derived cells in the developing bowel and pancreas. Dev. Biol. 258, 364–384 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Ramalho-Santos, M., Melton, D. A. & McMahon, A. P. Hedgehog signals regulate multiple aspects of gastrointestinal development. Development 127, 2763–2772 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Chalazonitis, A. et al. Neurotrophin-3 is required for the survival-differentiation of subsets of developing enteric neurons. J. Neurosci. 21, 5620–5636 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bates, M. D., Dunagan, D. T., Welch, L. C., Kaul, A. & Harvey, R. P. The Hlx homeobox transcription factor is required early in enteric nervous system development. BMC Dev. Biol. 6, 33 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Anderson, R. B. et al. The cell adhesion molecule l1 is required for chain migration of neural crest cells in the developing mouse gut. Gastroenterology 130, 1221–1232 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Taketomi, T. et al. Loss of mammalian Sprouty2 leads to enteric neuronal hyperplasia and esophageal achalasia. Nature Neurosci. 8, 855–857 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Warren, M. et al. A Sall4 mutant mouse model useful for studying the role of Sall4 in early embryonic development and organogenesis. Genesis 45, 51–58 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Breau, M. A. et al. Lack of β1 integrins in enteric neural crest cells leads to a Hirschsprung-like phenotype. Development 133, 1725–1734 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Heuckeroth, R. O. & Pachnis, V. Getting to the guts of enteric nervous system development. Development 133, 2287–2290 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Pietsch, J. et al. lessen encodes a zebrafish trap100 required for enteric nervous system development. Development 133, 395–406 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Kuhlman, J. & Eisen, J. S. Genetic screen for mutations affecting development and function of the enteric nervous system. Dev. Dyn. 236, 118–127 (2007). A forward genetic screen in zebrafish (similar to that performed in reference 109) identified mutations affecting enteric neuron number and distribution, and characterized the effects on gut motility. Mutant fish containing fewer enteric neurons exhibit a disruption in the normal rostral to caudal contractile waves of the gut, which could be likened to the abnormal regulation of smooth muscle contractions observed in HSCR.

    Article  PubMed  Google Scholar 

  111. Teng, L. & Labosky, P. A. Neural crest stem cells. Adv. Exp. Med. Biol. 589, 206–212 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Stemple, D. L. & Anderson, D. J. Isolation of a stem cell for neurons and glia from the mammalian neural crest. Cell 71, 973–985 (1992). Using antibodies to the cell-surface antigen p75, a neural crest population was isolated that, when analysed using clonal culture, was shown to contain multipotent neural crest progenitors capable of self-renewal. This groundbreaking work was the first to identify stem cells in the neural crest lineage and formed the basis for studies to identify and characterize ENS stem cells (see references 115–117).

    Article  CAS  PubMed  Google Scholar 

  113. Lo, L. & Anderson, D. J. Postmigratory neural crest cells expressing c-RET display restricted developmental and proliferative capacities. Neuron 15, 527–539 (1995).

    Article  CAS  PubMed  Google Scholar 

  114. Natarajan, D., Grigoriou, M., Marcos-Gutierrez, C. V., Atkins, C. & Pachnis, V. Multipotential progenitors of the mammalian enteric nervous system capable of colonising aganglionic bowel in organ culture. Development 126, 157–168 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Bixby, S., Kruger, G. M., Mosher, J. T., Joseph, N. M. & Morrison, S. J. Cell-intrinsic differences between stem cells from different regions of the peripheral nervous system regulate the generation of neural diversity. Neuron 35, 643–656 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Kruger, G. M. et al. Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential, and factor responsiveness. Neuron 35, 657–669 (2002). Cell-surface expression is used to isolate ENS-derived stem cells (termed NCSCs) from the embryonic and postnatal rat gut (see also reference 115), which can differentiate normally in vitro , and following transplantation into chick embryos. This work provides the foundation for studies showing that NCSCs isolated from HSCR model guts (see reference 117) (or EPCs; see reference 76) can be differentiated into neurons when transplanted into aganglionic regions of HSCR model guts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Mosher, J. T. et al. Intrinsic differences among spatially distinct neural crest stem cells in terms of migratory properties, fate determination, and ability to colonize the enteric nervous system. Dev. Biol. 303, 1–15 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Suarez-Rodriguez, R. & Belkind-Gerson, J. Cultured nestin-positive cells from postnatal mouse small bowel differentiate ex vivo into neurons, glia, and smooth muscle. Stem Cells 22, 1373–1385 (2004).

    Article  PubMed  Google Scholar 

  119. Schafer, K. H., Hagl, C. I. & Rauch, U. Differentiation of neurospheres from the enteric nervous system. Pediatr. Surg. Int. 19, 340–344 (2003).

    Article  PubMed  Google Scholar 

  120. Micci, M. A. & Pasricha, P. J. Neural stem cells for the treatment of disorders of the enteric nervous system: strategies and challenges. Dev. Dyn. 236, 33–43 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Takaki, M., Nakayama, S., Misawa, H., Nakagawa, T. & Kuniyasu, H. In vitro formation of enteric neural network structure in a gut-like organ differentiated from mouse embryonic stem cells. Stem Cells 24, 1414–1422 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Micci, M. A., Learish, R. D., Li, H., Abraham, B. P. & Pasricha, P. J. Neural stem cells express RET, produce nitric oxide, and survive transplantation in the gastrointestinal tract. Gastroenterology 121, 757–766 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Fu, M., Lui, V. C., Sham, M. H., Pachnis, V. & Tam, P. K. Sonic hedgehog regulates the proliferation, differentiation, and migration of enteric neural crest cells in gut. J. Cell Biol. 166, 673–684 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Rothman, T. P., Le Douarin, N. M., Fontaine-Perus, J. C. & Gershon, M. D. Developmental potential of neural crest-derived cells migrating from segments of developing quail bowel back-grafted into younger chick host embryos. Development 109, 411–423 (1990).

    Article  CAS  PubMed  Google Scholar 

  125. Rothman, T. P., Goldowitz, D. & Gershon, M. D. Inhibition of migration of neural crest-derived cells by the abnormal mesenchyme of the presumptive aganglionic bowel of ls/ls mice: analysis with aggregation and interspecies chimeras. Dev. Biol. 159, 559–573 (1993).

    Article  CAS  PubMed  Google Scholar 

  126. Martucciello, G. et al. Neural crest neuroblasts can colonise aganglionic and ganglionic gut in vivo. Eur. J. Pediatr. Surg. 17, 34–40 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Micci, M. A. et al. Neural stem cell transplantation in the stomach rescues gastric function in neuronal nitric oxide synthase-deficient mice. Gastroenterology 129, 1817–1824 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Rauch, U., Hansgen, A., Hagl, C., Holland-Cunz, S. & Schafer, K. H. Isolation and cultivation of neuronal precursor cells from the developing human enteric nervous system as a tool for cell therapy in dysganglionosis. Int. J. Colorectal Dis. 21, 554–559 (2006).

    Article  PubMed  Google Scholar 

  129. Almond, S., Lindley, R. M., Kenny, S. E., Connell, M. G. & Edgar, D. H. Characterisation and transplantation of enteric nervous system progenitor cells. Gut 56, 489–496 (2007). For the first time, ENS progenitor cells (ENSPCs) were isolated from human HSCR patient samples, and when transplanted into cultured mouse gut tissues could undergo differentiation into neurons and glial cells. This paper establishes an important first principle for the development of stem cell transplantation strategies.

    Article  PubMed  Google Scholar 

  130. Veiga-Fernandes, H. et al. Tyrosine kinase receptor RET is a key regulator of Peyer's patch organogenesis. Nature 446, 547–551 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Blaugrund, E. et al. Distinct subpopulations of enteric neuronal progenitors defined by time of development, sympathoadrenal lineage markers and Mash-1-dependence. Development 122, 309–320 (1996).

    Article  CAS  PubMed  Google Scholar 

  132. Guillemot, F. et al. Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75, 463–476 (1993).

    Article  CAS  PubMed  Google Scholar 

  133. Young, H. M., Ciampoli, D., Hsuan, J. & Canty, A. J. Expression of Ret-, p75NTR-, Phox2a-, Phox2b-, and tyrosine hydroxylase-immunoreactivity by undifferentiated neural crest-derived cells and different classes of enteric neurons in the embryonic mouse gut. Dev. Dyn. 216, 137–152 (1999).

    Article  CAS  PubMed  Google Scholar 

  134. Furness, J. B. & Costa, M. Types of nerves in the enteric nervous system. Neuroscience 5, 1–20 (1980).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank members of the Pachnis laboratory, M. Logan and the anonymous referees for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassilis Pachnis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Down's syndrome

Hirschsprung's disease

FURTHER INFORMATION

Pachnis's laboratory

Glossary

Peristalsis

Rhythmic contractions of smooth muscle that propel the contents of tubular structures, such as the gastrointestinal tract.

Neural crest

Groups of cells that migrate from the neural tube to the periphery, where they give rise to a wide variety of cell types including neurons and glial cells of the PNS, parts of the musculoskeletal system of the head, and melanocytes.

Somites

Paired blocks of mesoderm cells which form on either side of the neural tube in the vertebrate embryo and give rise to dermal skin, bone and muscle.

Aganglionosis

Absence of enteric ganglia from the gut.

Non-Mendelian

Inheritance affected by complex genetic and environmental factors, leading to variable penetrance and expressivity of a genetic trait without exhibiting patterns of single locus transmission.

Susceptibility loci

Alleles that affect the risk of developing disease.

Alternative splicing

During splicing, introns are excised from RNA after transcription and the cut ends are rejoined to form a continuous message. Alternative splicing allows the production of different messages from the same DNA molecule.

Gene dosage

The number of times a gene copy is present in the genome.

Haploinsufficiency

Loss of one copy (one allele) of a gene, resulting in an abnormal or disease state.

Linkage studies

Linkage is the tendency of genes and other genetic markers to be inherited together. Large multigenerational families enriched for particular disease phenotypes are screened for genetic markers that are transmitted with the disease (because they are closely linked), thus localizing the disease-associated gene to a relatively small chromosomal region.

DNA microarrays

A device that is used to interrogate complex nucleic acid samples by hybridization. It makes it possible to quantify the cDNA molecules that are present in a tissue and detect changes, for example, between developmental stages or in response to disease states.

Real-time PCR

A technique designed to quantify the amount of DNA (or cDNA) in a sample by detecting and quantifying sequence-specific PCR (or reverse-transcription PCR) products as they accumulate in 'real-time' during the PCR amplification process.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heanue, T., Pachnis, V. Enteric nervous system development and Hirschsprung's disease: advances in genetic and stem cell studies. Nat Rev Neurosci 8, 466–479 (2007). https://doi.org/10.1038/nrn2137

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2137

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing