Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Signalling shortcuts: cell-surface receptors in the nucleus?

Abstract

Do cell-surface growth-factor receptors and their ligands accumulate in the nucleoplasm under physiological conditions? And, if so, how do they get there and what function do they serve in this location? Recent advances have provided tantalizing hints to the answers to these questions, and hold the key to identifying a new mode of signal transduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Putative mechanisms by which the epidermal growth factor receptor (EGFR) might move to the nucleus.
Figure 2: Postulated functions of nuclear growth-factor receptors.

Similar content being viewed by others

References

  1. Hunter, T. Signaling — 2000 and beyond. Cell 100, 113–127 (2000).

    Article  CAS  Google Scholar 

  2. Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 103, 211–225 (2000).

    CAS  Google Scholar 

  3. Wells, A. in Hormone Signalling (eds Goffin, V. & Kelly, P. A.) 57–80 (Kluwer Academic, Norwell, Massachusetts, 2002).

    Book  Google Scholar 

  4. David, M. et al. STAT activation by epidermal growth factor (EGF) and amphiregulin: requirement for the EGF receptor kinase but not for tyrosine phosphorylation sites or JAK1. J. Biol. Chem. 271, 9185–9188 (1996).

    Article  CAS  Google Scholar 

  5. Marti, U. & Wells, A. The nuclear accumulation of a variant epidermal growth factor receptor (EGFR) lacking the transmembrane domain requires co-expression of a full length EGFR. Mol. Cell Biol. Res. Commun. 3, 8–14 (2000).

    Article  CAS  Google Scholar 

  6. Lin, S. Y. et al. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nature Cell Biol. 3, 802–808 (2001).

    Article  CAS  Google Scholar 

  7. Reilly, J. F. & Maher, P. A. Importin β-mediated nuclear import of fibroblast growth factor receptor: role in cell proliferation. J. Cell Biol. 152, 1307–1312 (2001).

    Article  CAS  Google Scholar 

  8. Offterdinger, M., Schofer, C., Weipoltshammer, K. & Grunt, T. W. c-erbB-3: a nuclear protein in mammary epithelial cells. J. Cell Biol. 6, 929–940 (2002).

    Article  Google Scholar 

  9. Ni, C.-Y., Murphy, M. P., Golde, T. E. & Carpenter, G. γ-Secretase cleavage and nuclear localization of erbB-4 receptor tyrosine kinase. Science 294, 2179–2184 (2001).

    Article  CAS  Google Scholar 

  10. Basu, M., Biswas, R. & Das, M. 42,000-molecular weight EGF receptor has protein kinase activity. Nature 311, 477–480 (1984).

    Article  CAS  Google Scholar 

  11. Mroczkowski, B., Mosig, G. & Cohen, S. ATP-stimulated interaction between epidermal growth factor receptor and supercoiled DNA. Nature 309, 270–273 (1984).

    Article  CAS  Google Scholar 

  12. Basu, M. et al. EGF receptor-associated DNA-nicking activity is due to a Mr-100,000 dissociable protein. Nature 316, 640–641 (1985).

    Article  CAS  Google Scholar 

  13. Raper, S. E., Burwen, S. J., Barker, M. E. & Jones, A. L. Translocation of epidermal growth factor to the hepatocyte nucleus during rat liver regeneration. Gastroenterology 92, 1243–1250 (1987).

    Article  CAS  Google Scholar 

  14. Marti, U. et al. Localization of epidermal growth factor receptor in hepatocyte nuclei. Hepatology 13, 15–20 (1991).

    Article  CAS  Google Scholar 

  15. Katoh, M. et al. K-sam encodes secreted as well as transmembrane receptor tyrosine kinase. Proc. Natl Acad. Sci. USA 89, 2960–2964 (1992).

    Article  CAS  Google Scholar 

  16. Marti, U. et al. Nuclear localization of epidermal growth factor and epidermal growth factor receptors in human thyroid tissues. Thyroid 11, 137–145 (2001).

    Article  CAS  Google Scholar 

  17. Bargmann, C. I., Hung, M. C. & Weinberg, R. A. Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of p185. Cell 45, 649–657 (1986).

    Article  CAS  Google Scholar 

  18. Longo, N. et al. Activation of insulin receptor signaling by a single amino acid substitution in the transmembrane domain. J. Biol. Chem. 267, 12416–12419 (1992).

    CAS  PubMed  Google Scholar 

  19. Xie, Y. & Hung, M.-C. Nuclear localization of p185neu tyrosine kinase and its association with transcriptional transactivation. Biochem. Biophys. Res. Commun. 203, 1589–1598 (1994).

    Article  CAS  Google Scholar 

  20. Heldin, C.-H. & Ericsson, J. RIPping tyrosine kinase receptors apart. Science 294, 2111–2113 (2001).

    Article  CAS  Google Scholar 

  21. Marti, U. & Hug, M. Acinar and cellular distribution and mRNA expression of the epidermal growth factor receptor are changed during liver regeneration. J. Hepatol. 23, 318–327 (1995).

    CAS  PubMed  Google Scholar 

  22. Burke, P., Schooler, K. & Wiley, H. S. Regulation of epidermal growth factor receptor signaling by endocytosis and intracellular trafficking. Mol. Biol. Cell 12, 1897–1910 (2001).

    Article  CAS  Google Scholar 

  23. Wells, A. Molecule in focus: EGF receptor. Int. J. Biochem. Cell Biol. 31, 637–643 (1999).

    Article  CAS  Google Scholar 

  24. Oksvold, M., Huitfeldt, H., Stang, E. & Madshus, I. Localizing the EGF receptor. Nature Cell Biol. 4, E22 (2002).

    Article  CAS  Google Scholar 

  25. Waugh, M. G. & Hsuan, J. J. EGF receptors as transcription factors: ridiculous or sublime. Nature Cell Biol. 3, E209–E211 (2001).

    Article  CAS  Google Scholar 

  26. Pederson, T. Growth factors in the nucleolus. J. Cell Biol. 143, 279–281 (1998).

    Article  CAS  Google Scholar 

  27. Swindle, C. S. et al. Epidermal growth factor (EGF)-like repeats of human tenascin-C as ligands for EGF receptor. J. Cell Biol. 154, 459–468 (2001).

    Article  CAS  Google Scholar 

  28. Lee, H. J. et al. Presenilin-dependent γ-secretase-like intramembrane cleavage of ErbB4. J. Biol. Chem. 277, 6318–6323 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We apologize to the many authors whose works were not cited here owing to both space limitations and the focus on the EGFR family. Our work was supported by grants from the National Institutes of Health (NIGMS and NCI), the Veterans Administration and the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Wells.

Related links

Related links

DATABASES

LocusLink

amphiregulin

Cdc42

c-Jun

cyclin D1

EGF

EGFR

ErbB2

ErbB3

ErbB4

FGFR1

Fos

GAL4

Grb2

HB-EGF

importin β

insulin

k-sam

Myc

Sos

STAT1

STAT3

TGF-α

ProSite

SH2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wells, A., Marti, U. Signalling shortcuts: cell-surface receptors in the nucleus?. Nat Rev Mol Cell Biol 3, 697–702 (2002). https://doi.org/10.1038/nrm905

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm905

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing