Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The dynamin superfamily: universal membrane tubulation and fission molecules?

Key Points

  • Classical dynamins belong to a superfamily that includes dynamin-like proteins, optic atrophy 1 (OPA1), mitofusin and Mx proteins.

  • On the basis of sequence homology, domain structure and biological functions, we define the superfamily members from yeast and plants to man.

  • It is proposed that all members of the superfamily are membrane-binding and oligomerization-dependent GTPases.

  • On the basis of structural and biochemical comparison, it is possible to test the functions of all members of this superfamily with the use of site-directed mutagenesis.

  • It is proposed that all dynamin-superfamily members are mechanochemical GTPases that either function in membrane scission or tubulation.

  • The mechanochemical mechanism of dynamin is applied to all known biological functions of the superfamily: vesicle scission, mitochondrial fission and fusion, cytokinesis and antiviral activity.

Abstract

Dynamins are large GTPases that belong to a protein superfamily that, in eukaryotic cells, includes classical dynamins, dynamin-like proteins, OPA1, Mx proteins, mitofusins and guanylate-binding proteins/atlastins. They are involved in many processes including budding of transport vesicles, division of organelles, cytokinesis and pathogen resistance. With sequenced genomes from Homo sapiens, Drosophila melanogaster, Caenorhabditis elegans, yeast species and Arabidopsis thaliana, we now have a complete picture of the members of the dynamin superfamily from different organisms. Here, we review the superfamily of dynamins and their related proteins, and propose that a common mechanism leading to membrane tubulation and/or fission could encompass their many varied functions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dynamin-superfamily members in animals and plants.
Figure 2: Domain structure of the human dynamin superfamily.
Figure 3: GTP-binding motifs.
Figure 4: Oligomerization of dynamins.
Figure 5: Functions of dynamins.
Figure 6: GTPase activity and lipid distortion.

Similar content being viewed by others

References

  1. Grigliatti, T. A., Hall, L., Rosenbluth, R. & Suzuki, D. T. Temperature-sensitive mutations in Drosophila melanogaster. XIV. A selection of immobile adults. Mol. Gen. Genet. 120, 107–114 (1973). Identifies the Shibire, Stoned and Paralytic temperature-sensitive loci. The authors also found the Rapid Exhaustion, Bang Sensitive, and Wobbly non-temperature-sensitive loci.

    CAS  PubMed  Google Scholar 

  2. Suzuki, D. T., Grigliatti, T. & Williamson, R. Temperature-sensitive mutations in Drosophila melanogaster. VII. A mutation (para-ts) causing reversible adult paralysis. Proc. Natl Acad. Sci. USA 68, 890–893 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. van der Bliek, A. M. & Meyerowitz, E. M. Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature 351, 411–414 (1991).

    CAS  PubMed  Google Scholar 

  4. Chen, M. S. et al. Multiple forms of dynamin are encoded by shibire, a Drosophila gene involved in endocytosis. Nature 351, 583–586 (1991).

    CAS  PubMed  Google Scholar 

  5. Shpetner, H. S. & Vallee, R. B. Identification of dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules. Cell 59, 421–432 (1989).

    CAS  PubMed  Google Scholar 

  6. Obar, R. A., Collins, C. A., Hammarback, J. A., Shpetner, H. S. & Vallee, R. B. Molecular cloning of the microtubule-associated mechanochemical enzyme dynamin reveals homology with a new family of GTP-binding proteins. Nature 347, 256–261 (1990). The first cloning of dynamin showing that it was part of a superfamily of GTPases.

    CAS  PubMed  Google Scholar 

  7. Robinson, P. J., Hauptschein, R., Lovenberg, W. & Dunkley, P. R. Dephosphorylation of synaptosomal proteins P96 and P139 is regulated by both depolarization and calcium, but not by a rise in cytosolic calcium alone. J. Neurochem. 48, 187–195 (1987).

    CAS  PubMed  Google Scholar 

  8. Cao, H., Garcia, F. & McNiven, M. A. Differential distribution of dynamin isoforms in mammalian cells. Mol. Biol. Cell 9, 2595–2609 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Nakata, T., Takemura, R. & Hirokawa, N. A novel member of the dynamin family of GTP-binding proteins is expressed specifically in the testis. J. Cell Sci. 105, 1–5 (1993).

    CAS  PubMed  Google Scholar 

  10. Sontag, J. M. et al. Differential expression and regulation of multiple dynamins. J. Biol. Chem. 269, 4547–4554 (1994).

    CAS  PubMed  Google Scholar 

  11. Gray, N. W. et al. Dynamin 3 is a component of the postsynapse, where it interacts with mGluR5 and Homer. Curr. Biol. 13, 510–515 (2003).

    CAS  PubMed  Google Scholar 

  12. Henley, J. R., Krueger, E. W., Oswald, B. J. & McNiven, M. A. Dynamin-mediated internalization of caveolae. J. Cell Biol. 141, 85–99 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Oh, P., McIntosh, D. P. & Schnitzer, J. E. Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J. Cell Biol. 141, 101–114 (1998). References 12 and 13 are the first clear demonstrations of the involvement of dynamin in vesicle-scission events other than clathrin-mediated vesicle budding. Dynamin has now been implicated in many other budding events.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Gold, E. S. et al. Dynamin 2 is required for phagocytosis in macrophages. J. Exp. Med. 190, 1849–1856 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ochoa, G. C. et al. A functional link between dynamin and the actin cytoskeleton at podosomes. J. Cell Biol. 150, 377–389 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. van Dam, E. M. & Stoorvogel, W. Dynamin-dependent transferrin receptor recycling by endosome-derived clathrin-coated vesicles. Mol. Biol. Cell 13, 169–182 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Orth, J. D. & McNiven, M. A. Dynamin at the actin-membrane interface. Curr. Opin. Cell Biol. 15, 31–39 (2003).

    CAS  PubMed  Google Scholar 

  18. Gammie, A. E., Kurihara, L. J., Vallee, R. B. & Rose, M. D. DNM1, a dynamin-related gene, participates in endosomal trafficking in yeast. J. Cell Biol. 130, 553–566 (1995).

    CAS  PubMed  Google Scholar 

  19. Shin, H. W., Shinotsuka, C., Torii, S., Murakami, K. & Nakayama, K. Identification and subcellular localization of a novel mammalian dynamin-related protein homologous to yeast Vps1p and Dnm1p. J. Biochem. 122, 525–530 (1997).

    CAS  PubMed  Google Scholar 

  20. Kamimoto, T. et al. Dymple, a novel dynamin-like high molecular weight GTPase lacking a proline-rich carboxyl-terminal domain in mammalian cells. J. Biol. Chem. 273, 1044–1051 (1998).

    CAS  PubMed  Google Scholar 

  21. Hong, Y. R., Chen, C. H., Cheng, D. S., Howng, S. L. & Chow, C. C. Human dynamin-like protein interacts with the glycogen synthase kinase 3β. Biochem. Biophys. Res. Commun. 249, 697–703 (1998).

    CAS  PubMed  Google Scholar 

  22. Smirnova, E., Shurland, D. L., Ryazantsev, S. N. & van der Bliek, A. M. A human dynamin-related protein controls the distribution of mitochondria. J. Cell Biol. 143, 351–358 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Imoto, M., Tachibana, I. & Urrutia, R. Identification and functional characterization of a novel human protein highly related to the yeast dynamin-like GTPase Vps1p. J. Cell Sci. 111, 1341–1349 (1998).

    CAS  PubMed  Google Scholar 

  24. Labrousse, A. M., Zappaterra, M. D., Rube, D. A. & van der Bliek, A. M. C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol. Cell 4, 815–826 (1999). This is a clear demonstration of the function of dynamin-like proteins in mitochondrial division in live animals.

    CAS  PubMed  Google Scholar 

  25. Wienke, D. C., Knetsch, M. L., Neuhaus, E. M., Reedy, M. C. & Manstein, D. J. Disruption of a dynamin homologue affects endocytosis, organelle morphology, and cytokinesis in Dictyostelium discoideum. Mol. Biol. Cell 10, 225–243 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Shin, H. W. et al. Intermolecular and interdomain interactions of a dynamin-related GTP-binding protein, Dnm1p/Vps1p-like protein. J. Biol. Chem. 274, 2780–2785 (1999).

    CAS  PubMed  Google Scholar 

  27. Smirnova, E., Griparic, L., Shurland, D. L. & van der Bliek, A. M. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol. Biol. Cell 12, 2245–2256 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yoon, Y., Pitts, K. R. & McNiven, M. A. Mammalian dynamin-like protein DLP1 tubulates membranes. Mol. Biol. Cell 12, 2894–2905 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Klockow, B. et al. The dynamin A ring complex: molecular organization and nucleotide-dependent conformational changes. EMBO J. 21, 240–250 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim, Y. W. et al. Arabidopsis dynamin-like 2 that binds specifically to phosphatidylinositol-4-phosphate assembles into a high-molecular weight complex in vivo and in vitro. Plant Physiol. 127, 1243–1255 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rothman, J. H., Raymond, C. K., Gilbert, T., O'Hara, P. J. & Stevens, T. H. A putative GTP binding protein homologous to interferon-inducible Mx proteins performs an essential function in yeast protein sorting. Cell 61, 1063–1074 (1990).

    CAS  PubMed  Google Scholar 

  32. Wilsbach, K. & Payne, G. S. Vps1p, a member of the dynamin GTPase family, is necessary for Golgi membrane protein retention in Saccharomyces cerevisiae. EMBO J. 12, 3049–3059 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Staeheli, P., Haller, O., Boll, W., Lindenmann, J. & Weissmann, C. Mx protein: constitutive expression in 3T3 cells transformed with cloned Mx cDNA confers selective resistance to influenza virus. Cell 44, 147–158 (1986). A direct demonstation of the antiviral effect of MxA.

    CAS  PubMed  Google Scholar 

  34. Janzen, C., Kochs, G. & Haller, O. A monomeric GTPase-negative MxA mutant with antiviral activity. J. Virol. 74, 8202–8206 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kochs, G., Haener, M., Aebi, U. & Haller, O. Self-assembly of human MxA GTPase into highly ordered dynamin-like oligomers. J. Biol. Chem. 277, 14172–14176 (2002).

    CAS  PubMed  Google Scholar 

  36. Gao, H., Kadirjan-Kalbach, D., Froehlich, J. E. & Osteryoung, K. W. ARC5, a cytosolic dynamin-like protein from plants, is part of the chloroplast division machinery. Proc. Natl Acad. Sci. USA 100, 4328–4333 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Miyagishima, S. Y. et al. A plant-specific dynamin-related protein forms a ring at the chloroplast division site. Plant Cell 15, 655–665 (2003). Uses a very interesting model organism, which has one mitochondrion and one chloroplast. Also shows a ring of dynamin constricting during organelle division.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Satoh, M., Hamamoto, T., Seo, N., Kagawa, Y. & Endo, H. Differential sublocalization of the dynamin-related protein OPA1 isoforms in mitochondria. Biochem. Biophys. Res. Commun. 300, 482–493 (2003).

    CAS  PubMed  Google Scholar 

  39. Olichon, A. et al. The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett. 523, 171–176 (2002).

    CAS  PubMed  Google Scholar 

  40. Jones, B. A. & Fangman, W. L. Mitochondrial DNA maintenance in yeast requires a protein containing a region related to the GTP-binding domain of dynamin. Genes Dev. 6, 380–389 (1992).

    CAS  PubMed  Google Scholar 

  41. Wong, E. D. et al. The intramitochondrial dynamin-related GTPase, Mgm1p, is a component of a protein complex that mediates mitochondrial fusion. J. Cell Biol. 160, 303–311 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hales, K. G. & Fuller, M. T. Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell 90, 121–129 (1997).

    CAS  PubMed  Google Scholar 

  43. Hermann, G. J. et al. Mitochondrial fusion in yeast requires the transmembrane GTPase Fzo1p. J. Cell Biol. 143, 359–373 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Rapaport, D., Brunner, M., Neupert, W. & Westermann, B. Fzo1p is a mitochondrial outer membrane protein essential for the biogenesis of functional mitochondria in Saccharomyces cerevisiae. J. Biol. Chem. 273, 20150–20155 (1998).

    CAS  PubMed  Google Scholar 

  45. Santel, A. & Fuller, M. T. Control of mitochondrial morphology by a human mitofusin. J. Cell Sci. 114, 867–874 (2001).

    CAS  PubMed  Google Scholar 

  46. Prakash, B., Praefcke, G. J. K., Renault, L., Wittinghofer, A. & Herrmann, C. Structure of human guanylate-binding protein 1 representing a unique class of GTP-binding proteins. Nature 403, 567–571 (2000).

    CAS  PubMed  Google Scholar 

  47. Prakash, B., Renault, L., Praefcke, G. J., Herrmann, C. & Wittinghofer, A. Triphosphate structure of guanylate-binding protein 1 and implications for nucleotide binding and GTPase mechanism. EMBO J. 19, 4555–4564 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Staeheli, P., Horisberger, M. A. & Haller, O. Mx-dependent resistance to influenza viruses is induced by mouse interferons α and β but not γ. Virology 132, 456–461 (1984).

    CAS  PubMed  Google Scholar 

  49. Anderson, S. L., Carton, J. M., Lou, J., Xing, L. & Rubin, B. Y. Interferon-induced guanylate binding protein-1 (GBP-1) mediates an antiviral effect against vesicular stomatitis virus and encephalomyocarditis virus. Virology 256, 8–14 (1999).

    CAS  PubMed  Google Scholar 

  50. Schwemmle, M., Kaspers, B., Irion, A., Staeheli, P. & Schultz, U. Chicken guanylate-binding protein. Conservation of GTPase activity and induction by cytokines. J. Biol. Chem. 271, 10304–10308 (1996).

    CAS  PubMed  Google Scholar 

  51. Zhao, X. et al. Mutations in a newly identified GTPase gene cause autosomal dominant hereditary spastic paraplegia. Nature Genet. 29, 326–331 (2001).

    CAS  PubMed  Google Scholar 

  52. Zhu, P. P. et al. Cellular localization, oligomerization, and membrane association of the hereditary Spastic Paraplegia 3A (SPG3A) protein atlastin. J. Biol. Chem. 278, 49063–49071 (2003).

    CAS  PubMed  Google Scholar 

  53. Uthaiah, R. C., Praefcke, G. J., Howard, J. C. & Herrmann, C. IIGP1, an interferon-γ-inducible 47-kDa GTPase of the mouse, showing cooperative enzymatic activity and GTP-dependent multimerization. J. Biol. Chem. 278, 29336–29343 (2003).

    CAS  PubMed  Google Scholar 

  54. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

    CAS  PubMed  Google Scholar 

  55. Pai, E. F. et al. Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 Å resolution: implications for the mechanism of GTP hydrolysis. EMBO J. 9, 2351–2359 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Vetter, I. R. & Wittinghofer, A. The guanine nucleotide-binding switch in three dimensions. Science 294, 1299–1304 (2001).

    CAS  PubMed  Google Scholar 

  57. Niemann, H. H., Knetsch, M. L., Scherer, A., Manstein, D. J. & Kull, F. J. Crystal structure of a dynamin GTPase domain in both nucleotide-free and GDP-bound forms. EMBO J. 20, 5813–5821 (2001). The first high-resolution structure of the GTPase domain of a close homologue to dynamin 1.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Krishnan, K. S. et al. Nucleoside diphosphate kinase, a source of GTP, is required for dynamin-dependent synaptic vesicle recycling. Neuron 30, 197–210 (2001).

    CAS  PubMed  Google Scholar 

  59. Shpetner, H. S. & Vallee, R. B. Dynamin is a GTPase stimulated to high levels of activity by microtubules. Nature 355, 733–735 (1992).

    CAS  PubMed  Google Scholar 

  60. Tuma, P. L. & Collins, C. A. Activation of dynamin GTPase is a result of positive cooperativity. J. Biol. Chem. 269, 30842–30847 (1994). Assembly of dynamin on microtubules or acidic liposomes results in a positive cooperativity of GTP hydrolysis. This study implied that dynamin stimulates its own GTP hydrolysis on assembly.

    CAS  PubMed  Google Scholar 

  61. Warnock, D. E., Hinshaw, J. E. & Schmid, S. L. Dynamin self-assembly stimulates its GTPase activity. J. Biol. Chem. 271, 22310–22314 (1996).

    CAS  PubMed  Google Scholar 

  62. Sever, S., Muhlberg, A. B. & Schmid, S. L. Impairment of dynamin's GAP domain stimulates receptor-mediated endocytosis. Nature 398, 481–486 (1999). A study in which the authors suggest an alternative mechanism for dynamin as a regulatory GTPase.

    CAS  PubMed  Google Scholar 

  63. Stowell, M. H., Marks, B., Wigge, P. & McMahon, H. T. Nucleotide-dependent conformational changes in dynamin: evidence for a mechanochemical molecular spring. Nature Cell Biol. 1, 27–32 (1999). A demonstration of the mechanochemical properties of dynamin, in which the authors suggest a spring or 'poppase' mechanism for vesicle scission.

    CAS  PubMed  Google Scholar 

  64. Muhlberg, A. B., Warnock, D. E. & Schmid, S. L. Domain structure and intramolecular regulation of dynamin GTPase. EMBO J. 16, 6676–6683 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Smirnova, E., Shurland, D. L., Newman-Smith, E. D., Pishvaee, B. & van der Bliek, A. M. A model for dynamin self-assembly based on binding between three different protein domains. J. Biol. Chem. 274, 14942–14947 (1999).

    CAS  PubMed  Google Scholar 

  66. Okamoto, P. M., Tripet, B., Litowski, J., Hodges, R. S. & Vallee, R. B. Multiple distinct coiled-coils are involved in dynamin self-assembly. J. Biol. Chem. 274, 10277–10286 (1999).

    CAS  PubMed  Google Scholar 

  67. Zhang, P. & Hinshaw, J. E. Three-dimensional reconstruction of dynamin in the constricted state. Nature Cell Biol. 3, 922–926 (2001).

    CAS  PubMed  Google Scholar 

  68. Hinshaw, J. E. & Schmid, S. L. Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature 374, 190–192 (1995).

    CAS  PubMed  Google Scholar 

  69. Sweitzer, S. M. & Hinshaw, J. E. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93, 1021–1029 (1998). A demonstration of the mechanochemical properties of dynamin, in which the authors suggest a 'pinchase' mechanism of vesicle scission.

    CAS  PubMed  Google Scholar 

  70. Gu, X. & Verma, D. P. Phragmoplastin, a dynamin-like protein associated with cell plate formation in plants. EMBO J. 15, 695–704 (1996). The first dynamin identified in plants.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang, Z., Hong, Z. & Verma, D. P. Phragmoplastin polymerizes into spiral coiled structures via intermolecular interaction of two self-assembly domains. J. Biol. Chem. 275, 8779–8784 (2000).

    CAS  PubMed  Google Scholar 

  72. Melen, K. et al. Interferon-induced Mx proteins form oligomers and contain a putative leucine zipper. J. Biol. Chem. 267, 25898–25907 (1992). The first demonstration of the oligomerization of a dynamin-superfamily member.

    CAS  PubMed  Google Scholar 

  73. Nakayama, M. et al. Structure of mouse Mx1 protein. Molecular assembly and GTP-dependent conformational change. J. Biol. Chem. 268, 15033–15038 (1993).

    CAS  PubMed  Google Scholar 

  74. Schumacher, B. & Staeheli, P. Domains mediating intramolecular folding and oligomerization of MxA GTPase. J. Biol. Chem. 273, 28365–28370 (1998).

    CAS  PubMed  Google Scholar 

  75. Accola, M. A., Huang, B., Al Masri, A. & McNiven, M. A. The antiviral dynamin family member, MxA, tubulates lipids and localizes to the smooth endoplasmic reticulum. J. Biol. Chem. 277, 21829–21835 (2002).

    CAS  PubMed  Google Scholar 

  76. Klein, D. E., Lee, A., Frank, D. W., Marks, M. S. & Lemmon, M. A. The pleckstrin homology domains of dynamin isoforms require oligomerization for high affinity phosphoinositide binding. J. Biol. Chem. 273, 27725–27733 (1998).

    CAS  PubMed  Google Scholar 

  77. Lemmon, M. A. & Ferguson, K. M. Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem. J. 350, 1–18 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Vallis, Y., Wigge, P., Marks, B., Evans, P. R. & McMahon, H. T. Importance of the pleckstrin homology domain of dynamin in clathrin-mediated endocytosis. Curr. Biol. 9, 257–260 (1999).

    CAS  PubMed  Google Scholar 

  79. Lee, A., Frank, D. W., Marks, M. S. & Lemmon, M. A. Dominant-negative inhibition of receptor-mediated endocytosis by a dynamin-1 mutant with a defective pleckstrin homology domain. Curr. Biol. 9, 261–264 (1999).

    PubMed  Google Scholar 

  80. Achiriloaie, M., Barylko, B. & Albanesi, J. P. Essential role of the dynamin pleckstrin homology domain in receptor-mediated endocytosis. Mol. Cell Biol. 19, 1410–1415 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. McQuibban, G. A., Saurya, S. & Freeman, M. Mitochondrial membrane remodelling regulated by a conserved rhomboid protease. Nature 423, 537–541 (2003). The cleavage of Mgm1 by a rhomboid protease in the inner mitochondrial membrane is essential for its activity in mitochondrial fusion.

    CAS  PubMed  Google Scholar 

  82. Rojo, M., Legros, F., Chateau, D. & Lombes, A. Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J. Cell Sci. 115, 1663–1674 (2002).

    CAS  PubMed  Google Scholar 

  83. Cheng, Y. S., Patterson, C. E. & Staeheli, P. Interferon-induced guanylate-binding proteins lack an N(T)KXD consensus motif and bind GMP in addition to GDP and GTP. Mol. Cell Biol. 11, 4717–4725 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Gorbacheva, V. Y., Lindner, D., Sen, G. C. & Vestal, D. J. The interferon (IFN)-induced GTPase, mGBP-2. Role in IFN-γ-induced murine fibroblast proliferation. J. Biol. Chem. 277, 6080–6087 (2002).

    CAS  PubMed  Google Scholar 

  85. Scheffzek, K. et al. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277, 333–338 (1997).

    CAS  PubMed  Google Scholar 

  86. Sever, S., Damke, H. & Schmid, S. L. Dynamin:GTP controls the formation of constricted coated pits, the rate limiting step in clathrin-mediated endocytosis. J. Cell Biol. 150, 1137–1148 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Marks, B. et al. GTPase activity of dynamin and resulting conformation change are essential for endocytosis. Nature 410, 231–235 (2001). Hydrolysis of GTP by dynamin is required for vesicle scission, whereas GTP binding leads to tubulation in vivo.

    CAS  PubMed  Google Scholar 

  88. Eccleston, J. F., Binns, D. D., Davis, C. T., Albanesi, J. P. & Jameson, D. M. Oligomerization and kinetic mechanism of the dynamin GTPase. Eur. Biophys. J. 31, 275–282 (2002).

    CAS  PubMed  Google Scholar 

  89. Newmyer, S. L., Christensen, A. & Sever, S. Auxilin-dynamin interactions link the uncoating ATPase chaperone machinery with vesicle formation. Dev. Cell 4, 929–940 (2003).

    CAS  PubMed  Google Scholar 

  90. Pitts, K. R., Yoon, Y., Krueger, E. W. & McNiven, M. A. The dynamin-like protein DLP1 is essential for normal distribution and morphology of the endoplasmic reticulum and mitochondria in mammalian cells. Mol. Biol. Cell 10, 4403–4417 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Otsuga, D. et al. The dynamin-related GTPase, Dnm1p, controls mitochondrial morphology in yeast. J. Cell Biol. 143, 333–349 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Fukushima, N. H., Brisch, E., Keegan, B. R., Bleazard, W. & Shaw, J. M. The GTPase effector domain sequence of the Dnm1p GTPase regulates self-assembly and controls a rate-limiting step in mitochondrial fission. Mol. Biol. Cell 12, 2756–2766 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Kang, S. G. et al. Molecular cloning of an Arabidopsis cDNA encoding a dynamin-like protein that is localized to plastids. Plant Mol. Biol. 38, 437–447 (1998).

    CAS  PubMed  Google Scholar 

  94. Park, J. M. et al. A dynamin-like protein in Arabidopsis thaliana is involved in biogenesis of thylakoid membranes. EMBO J. 17, 859–867 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Hoepfner, D., van den Berg, M., Philippsen, P., Tabak, H. F. & Hettema, E. H. A role for Vps1p, actin, and the Myo2p motor in peroxisome abundance and inheritance in Saccharomyces cerevisiae. J. Cell Biol. 155, 979–990 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Koch, A. et al. Dynamin-like protein 1 is involved in peroxisomal fission. J. Biol. Chem. 278, 8597–8605 (2003).

    CAS  PubMed  Google Scholar 

  97. Li, X. & Gould, S. J. The dynamin-like GTPase Dlp1 is essential for peroxisome division and is recruited to peroxisomes in part by Pex11. J. Biol. Chem. 278, 17012–17020 (2003).

    CAS  PubMed  Google Scholar 

  98. Herlan, M., Vogel, F., Bornhovd, C., Neupert, W. & Reichert, A. S. Processing of Mgm1 by the Rhomboid-type protease Pcp1 is required for maintenance of mitochondrial morphology and of mitochondrial DNA. J. Biol. Chem. 278, 27781–27788 (2003).

    CAS  PubMed  Google Scholar 

  99. Wong, E. D. et al. The dynamin-related GTPase, Mgm1p, is an intermembrane space protein required for maintenance of fusion competent mitochondria. J. Cell Biol. 151, 341–352 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Sesaki, H. & Jensen, R. E. Division versus fusion: Dnm1p and Fzo1p antagonistically regulate mitochondrial shape. J. Cell Biol. 147, 699–706 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Lukowitz, W., Mayer, U. & Jurgens, G. Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product. Cell 84, 61–71 (1996).

    CAS  PubMed  Google Scholar 

  102. Samuels, A. L., Giddings, T. H., Jr. & Staehelin, L. A. Cytokinesis in tobacco BY-2 and root tip cells: a new model of cell plate formation in higher plants. J. Cell Biol. 130, 1345–1357 (1995).

    CAS  PubMed  Google Scholar 

  103. Gu, X. & Verma, D. P. Dynamics of phragmoplastin in living cells during cell plate formation and uncoupling of cell elongation from the plane of cell division. Plant Cell 9, 157–169 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Verma, D. P. Cytokinesis and building of the cell plate in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 751–784 (2001).

    CAS  PubMed  Google Scholar 

  105. Otegui, M. S., Mastronarde, D. N., Kang, B. H., Bednarek, S. Y. & Staehelin, L. A. Three-dimensional analysis of syncytial-type cell plates during endosperm cellularization visualized by high resolution electron tomography. Plant Cell 13, 2033–2051 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Feng, B., Schwarz, H. & Jesuthasan, S. Furrow-specific endocytosis during cytokinesis of zebrafish blastomeres. Exp. Cell Res. 279, 14–20 (2002).

    CAS  PubMed  Google Scholar 

  107. Thompson, H. M., Skop, A. R., Euteneuer, U., Meyer, B. J. & McNiven, M. A. The large GTPase dynamin associates with the spindle midzone and is required for cytokinesis. Curr. Biol. 12, 2111–2117 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Haller, O. & Kochs, G. Interferon-induced mx proteins: dynamin-like GTPases with antiviral activity. Traffic 3, 710–717 (2002).

    CAS  PubMed  Google Scholar 

  109. Kochs, G. & Haller, O. Interferon-induced human MxA GTPase blocks nuclear import of Thogoto virus nucleocapsids. Proc. Natl Acad. Sci. USA 96, 2082–2086 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Kochs, G. & Haller, O. GTP-bound human MxA protein interacts with the nucleocapsids of Thogoto virus (Orthomyxoviridae). J. Biol. Chem. 274, 4370–4376 (1999).

    CAS  PubMed  Google Scholar 

  111. Guenzi, E. et al. The helical domain of GBP-1 mediates the inhibition of endothelial cell proliferation by inflammatory cytokines. EMBO J. 20, 5568–5577 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Iversen, T. G., Skretting, G., Van Deurs, B. & Sandvig, K. Clathrin-coated pits with long, dynamin-wrapped necks upon expression of a clathrin antisense RNA. Proc. Natl Acad. Sci. USA 100, 5175–5180 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Kessell, I., Holst, B. D. & Roth, T. F. Membranous intermediates in endocytosis are labile, as shown in a temperature-sensitive mutant. Proc. Natl Acad. Sci. USA 86, 4968–4972 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Koenig, J. H. & Ikeda, K. Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval. J. Neurosci. 9, 3844–3860 (1989). Analysis of the shibire phenotype showing temperature-dependent reversible depletion and reformation of synaptic vesicles.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Kawasaki, F., Hazen, M. & Ordway, R. W. Fast synaptic fatigue in shibire mutants reveals a rapid requirement for dynamin in synaptic vesicle membrane trafficking. Nature Neurosci. 3, 859–860 (2000).

    CAS  PubMed  Google Scholar 

  116. Kang, B. H., Busse, J. S. & Bednarek, S. Y. Members of the Arabidopsis dynamin-like gene family, ADL1, are essential for plant cytokinesis and polarized cell growth. Plant Cell 15, 899–913 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Kang, B. H., Rancour, D. M. & Bednarek, S. Y. The dynamin-like protein ADL1C is essential for plasma membrane maintenance during pollen maturation. Plant J. 35, 1–15 (2003).

    CAS  PubMed  Google Scholar 

  118. Arimura, S. & Tsutsumi, N. A dynamin-like protein (ADL2b), rather than FtsZ, is involved in Arabidopsis mitochondrial division. Proc. Natl Acad. Sci. USA 99, 5727–5731 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Lam, B. C., Sage, T. L., Bianchi, F. & Blumwald, E. Regulation of ADL6 activity by its associated molecular network. Plant J. 31, 565–576 (2002).

    CAS  PubMed  Google Scholar 

  120. Jin, J. B. et al. A new dynamin-like protein, ADL6, is involved in trafficking from the trans-Golgi network to the central vacuole in Arabidopsis. Plant Cell 13, 1511–1526 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Nishida, K. et al. Dynamic recruitment of dynamin for final mitochondrial severance in a primitive red alga. Proc. Natl Acad. Sci. USA 100, 2146–2151 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Lee, E. & De Camilli, P. Dynamin at actin tails. Proc. Natl Acad. Sci. USA 99, 161–166 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Qualmann, B., Roos, J., DiGregorio, P. J. & Kelly, R. B. Syndapin I, a synaptic dynamin-binding protein that associates with the neural Wiskott–Aldrich syndrome protein. Mol. Biol. Cell 10, 501–513 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Olichon, A. et al. Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J. Biol. Chem. 278, 7743–7746 (2003).

    CAS  PubMed  Google Scholar 

  125. Delettre, C. et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nature Genet. 26, 207–210 (2000).

    CAS  PubMed  Google Scholar 

  126. Alexander, C. et al. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nature Genet. 26, 211–215 (2000). References 125 and 126 show the link between dominant optic atrophy (DOA) and mutations in a dynamin-superfamily member OPA1.

    CAS  PubMed  Google Scholar 

  127. Toomes, C. et al. Spectrum, frequency and penetrance of OPA1 mutations in dominant optic atrophy. Hum. Mol. Genet. 10, 1369–1378 (2001).

    CAS  PubMed  Google Scholar 

  128. Pesch, U. E. et al. OPA1 mutations in patients with autosomal dominant optic atrophy and evidence for semi-dominant inheritance. Hum. Mol. Genet. 10, 1359–1368 (2001).

    CAS  PubMed  Google Scholar 

  129. Thiselton, D. L. et al. A comprehensive survey of mutations in the OPA1 gene in patients with autosomal dominant optic atrophy. Invest. Ophthalmol. Vis. Sci. 43, 1715–1724 (2002).

    PubMed  Google Scholar 

  130. Delettre, C., Lenaers, G., Pelloquin, L., Belenguer, P. & Hamel, C. P. OPA1 (Kjer type) dominant optic atrophy: a novel mitochondrial disease. Mol. Genet. Metab. 75, 97–107 (2002).

    CAS  PubMed  Google Scholar 

  131. Marchbank, N. J. et al. Deletion of the OPA1 gene in a dominant optic atrophy family: evidence that haploinsufficiency is the cause of disease. J. Med. Genet. 39, e47 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Carr, J. F. & Hinshaw, J. E. Dynamin assembles into spirals under physiological salt conditions upon the addition of GDP and γ-phosphate analogues. J. Biol. Chem. 272, 28030–28035 (1997).

    CAS  PubMed  Google Scholar 

  133. Owen, D. J. et al. Crystal structure of the amphiphysin-2 SH3 domain and its role in the prevention of dynamin ring formation. EMBO J. 17, 5273–5285 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Kochs, G., Janzen, C., Hohenberg, H. & Haller, O. Antivirally active MxA protein sequesters La Crosse virus nucleocapsid protein into perinuclear complexes. Proc. Natl Acad. Sci. USA 99, 3153–3158 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Mozdy, A. D., McCaffery, J. M. & Shaw, J. M. Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. J. Cell Biol. 151, 367–380 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Binns, D. D. et al. The mechanism of GTP hydrolysis by dynamin II: a transient kinetic study. Biochemistry 39, 7188–7196 (2000).

    CAS  PubMed  Google Scholar 

  137. Richter, M. F., Schwemmle, M., Herrmann, C., Wittinghofer, A. & Staeheli, P. Interferon-induced MxA protein. GTP binding and GTP hydrolysis properties. J. Biol. Chem. 270, 13512–13517 (1995).

    CAS  PubMed  Google Scholar 

  138. Schwemmle, M. & Staeheli, P. The interferon-induced 67-kDa guanylate-binding protein (hGBP1) is a GTPase that converts GTP to GMP. J. Biol. Chem. 269, 11299–11305 (1994).

    CAS  PubMed  Google Scholar 

  139. Praefcke, G. J., Geyer, M., Schwemmle, M., Robert Kalbitzer, H. & Herrmann, C. Nucleotide-binding characteristics of human guanylate-binding protein 1 (hGBP1) and identification of the third GTP-binding motif. J. Mol. Biol. 292, 321–332 (1999).

    CAS  PubMed  Google Scholar 

  140. Schweins, T. et al. Substrate-assisted catalysis as a mechanism for GTP hydrolysis of p21ras and other GTP-binding proteins. Nature Struct. Biol. 2, 36–44 (1995).

    CAS  PubMed  Google Scholar 

  141. John, J. et al. Kinetics of interaction of nucleotides with nucleotide-free H-ras p21. Biochemistry 29, 6058–6065 (1990).

    CAS  PubMed  Google Scholar 

  142. Berman, D. M., Wilkie, T. M. & Gilman, A. G. GAIP and RGS4 are GTPase-activating proteins for the Gi subfamily of G protein α subunits. Cell 86, 445–452 (1996).

    CAS  PubMed  Google Scholar 

  143. McEwen, D. P., Gee, K. R., Kang, H. C. & Neubig, R. R. Fluorescent BODIPY-GTP analogs: real-time measurement of nucleotide binding to G proteins. Anal. Biochem. 291, 109–117 (2001).

    CAS  PubMed  Google Scholar 

  144. Otero, A. D. Transphosphorylation and G protein activation. Biochem. Pharmacol. 39, 1399–1404 (1990).

    CAS  PubMed  Google Scholar 

  145. Bourne, H. R., Sanders, D. A. & McCormick, F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348, 125–132 (1990).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Flybase

Fzo1

shibire

Interpro

amphyphysin

dynamin

Saccharomyces genome database

Mgm1

Vps1

Schizosaccharomyces pombe GeneDB

Msp1

Swiss-Prot

atlastin

DymA

GBP1

Mammalian dynamin 1

Mammalian dynamin 2

Mammalian dynamin 3

mitofusin

MxA

MxB

OPA1

Ras

TAIR

ADL2

ADL6

ARC5

FURTHER INFORMATION

Dynamin homepage

Dynamin web site

GTPase domain web site

Dynamin assembly

PH domain web site

PRD domain web site

DymA/GBP structures

GTP-binding motifs web site

GTP-binding residues web site

Shibire web site

Oligomerization web site

The OMIM OPA1 entry

More dynamin information

Mx proteins

Glossary

SCISSION

Cleavage of the vesicle from the parent membrane — as in the use of scissors to sever.

SNARE

(soluble N-ethylmaleimide-sensitive fusion protein attachment protein (SNAP) receptor). SNARE proteins are a family of membrane-tethered coiled-coil proteins that regulate fusion reactions and target specificity in vesicle trafficking. They can be divided into v-SNAREs and t-SNAREs on the basis of their localization.

CLASSICAL DYNAMINS

Dynamins that show sequence homology to the protein described in 1989 as 'dynamin', a microtubule-binding protein. For these classical proteins, the homology extends over the complete length of the protein and they have five distinct domains.

DYNAMIN-RELATED PROTEINS

Dynamins that lack one or more domains or have additional domains that are not present in classical dynamins. Some of these proteins might be functionally indistinguishable from classical dynamins.

CLATHRIN-COATED VESICLE

(CCV). Transport vesicles that bud with the aid of a coat protein known as clathrin.

CAVEOLAE

Flask-shaped invaginations of the plasma membrane that are coated with the protein caveolin. Caveolae are endocytosed in a clathrin-independent manner.

DYNAMINS

Members of the dynamin superfamily, which include the dynamin-related proteins, Mx proteins and GBP/atlastin.

PLECKSTRIN-HOMOLOGY (PH) DOMAIN

A protein module of 100 amino acids that is present in a range of proteins. Different PH domains interact with various phospholipids and are therefore involved in the targeting of the proteins.

SRC-HOMOLOGY-3 (SH3) DOMAIN

A protein module of 80 amino acids that is present in a range of proteins and was first identified in the protein kinase Src. SH3 domains interact with proline-rich sequences that usually contain a PxxxPxR motif.

CLATHRIN-COATED PIT

(CCP). The initial site of invagination of a clathrin-coated vesicle.

FISSION

The breakage of one object into parts — for example, fission of the lipid membrane.

PHRAGMOPLASTIN

Dynamin-like protein found at the phragmoplast, which is the microtubular network in dividing plant cells that transports Golgi-derived vesicles to the cell plate.

CELL PLATE

A flat, membrane-bound incipient cell wall at the division plane of a plant cell. The cell plate is formed by fusion and tubulation of Golgi-derived vesicles, which results in the outward expansion, and finally fusion, of the vesicles with the side walls.

ACTIVE ZONE

A specialized area of the presynaptic plasma membrane where synaptic vesicles fuse and release their neurotransmitter content.

SWITCH REGIONS

Regions of nucleotide-binding proteins that have different conformations in the triphosphate- compared to the diphosphate-bound state.

CRISTAE

The inward folds of the inner mitochondrial membrane that increase its surface area.

PLASTIDS

Organelles that are found in eukaryotic plant cytoplasm. They all contain DNA and are surrounded by a double membrane.

RNA INTERFERENCE

(RNAi). A form of post-transcriptional gene silencing in which expression or transfection of double-stranded RNA induces degradation — by nucleases — of the homologous endogenous transcripts. This mimics the effect of the reduction, or loss, of gene activity.

CLEAVAGE FURROW

An invagination of the plasma membrane in the division plane of an animal cell that contains a contractile ring, and which leads to scission of the daughter cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Praefcke, G., McMahon, H. The dynamin superfamily: universal membrane tubulation and fission molecules?. Nat Rev Mol Cell Biol 5, 133–147 (2004). https://doi.org/10.1038/nrm1313

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1313

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing