Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Detecting shared pathogenesis from the shared genetics of immune-related diseases

Key Points

  • Genetic factors play an important part in the development of autoimmune and inflammatory disorders, such as rheumatoid arthritis, inflammatory bowel disease, type 1 diabetes, asthma and coeliac disease. An increase in co-morbidity and clustering of different autoimmune diseases in families suggest the existence of an overlap in the genetic background of these diseases.

  • Until recently, only the human leukocyte antigen (HLA) locus and a few candidate genes have consistently been associated with these immune-related diseases. However, with the development of Genome-wide association (GWA) studies, dozens of new susceptibilty genes and loci have been identified in various immune-related diseases.

  • Many of these newly identified loci are shared by two or more immune-related diseases, and the majority of these shared genes belong to just a few immunological pathways: T-cell signalling and differentiation, innate immunity, and tumour necrosis factor (TNF) signalling. Moreover, many of the disease-specific associated genes are involved in the same pathways.

  • Many immune-related diseases are characterized by high numbers of T cells, as well as by an imbalance in T-cell subsets. The association of T-cell differentiation pathway genes with multiple immune-related diseases suggests that the functional roles of the T helper (TH) 1, TH17 and T regulatory (Treg) molecules in these diseases are altered by genetic factors.

  • Association of autoimmune diseases with genes that are involved in innate immunity provides links to bacterial and viral infections as the triggers of disease and might lead to the development of new tools for prevention, such as vaccines.

  • Understanding the shared pathogenesis between immune-related diseases might provide targets for therapeutic intervention. Targeting pathways rather than genes and correlating the genetic profile of a patient to the effectiveness of a specific therapy might open new avenues in clinical trials.

  • So far, the genetic study of immune-related diseases has only revealed the tip of the iceberg, as more genes need to be found and the true causal variants need to be identified.

  • The notion of shared genetic pathways identifies new and powerful approaches for determining the full repertoire of susceptibility genes — instead of focusing on single diseases, genetic resources can be shared.

Abstract

Recent genetic studies have revealed shared immunological mechanisms in several immune-related disorders that further our understanding of the development and concomitance of these diseases. Our Review focuses on these shared aspects, using the novel findings of recently performed genome-wide association studies and non-synonymous SNP scans as a starting point. We discuss how identifying new genes that are associated with more than one autoimmune or chronic inflammatory disorder could explain the genetic basis of the shared pathogenesis of immune-related diseases. This analysis helps to highlight the key molecular pathways that are involved in these disorders and the potential roles of novel genes in immune-related diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The proportion of disease-associated genes in different pathways or categories.
Figure 2: T-cell differentiation and signalling.

Similar content being viewed by others

References

  1. Davies, A. J. Immunological tolerance and the autoimmune response. Autoimmun. Rev. 7, 538–543 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Broide, D. New perspectives on mechanisms underlying chronic allergic inflammation and asthma in 2007. J. Allergy Clin. Immunol. 122, 475–480 (2008).

    Article  PubMed  Google Scholar 

  3. Cho, J. H. The genetics and immunopathogenesis of inflammatory bowel disease. Nature Rev. Immunol. 8, 458–466 (2008). This paper gives an up-to-date summary of genetic findings in Crohn's disease, and discusses their biological relevance and applications.

    Article  CAS  Google Scholar 

  4. Somers, E. C., Thomas, S. L., Smeeth, L. & Hall, A. J. Autoimmune diseases co-occurring within individuals and within families: a systematic review. Epidemiology 17, 202–217 (2006).

    Article  PubMed  Google Scholar 

  5. Barera, G. et al. Occurrence of celiac disease after onset of type 1 diabetes: a 6-year prospective longitudinal study. Pediatrics 109, 833–838 (2002).

    Article  PubMed  Google Scholar 

  6. Xavier, R. J. & Rioux, J. D. Genome-wide association studies: a new window into immune-mediated diseases. Nature Rev. Immunol. 8, 631–643 (2008). This review discusses the results of GWA studies in several immune-related diseases, their impact on understanding disease pathogenesis and future prospectives.

    Article  CAS  Google Scholar 

  7. Fernando, M. M. et al. Defining the role of the MHC in autoimmunity: a review and pooled analysis. PLoS Genet. 4, e1000024 (2008). This paper gives a comprehensive summary of the literature on HLA association with six immune-mediated diseases.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Duffy, D. L. Genetic determinants of diabetes are similarly associated with other immune-mediated diseases. Curr. Opin. Allergy Clin. Immunol. 7, 468–474 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Ueda, H. et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423, 506–511 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Becker, K. G. et al. Clustering of non-major histocompatibility complex susceptibility candidate loci in human autoimmune diseases. Proc. Natl Acad. Sci. USA 95, 9979–9984 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Becker, K. G. The common variants/multiple disease hypothesis of common complex genetic disorders. Med. Hypotheses 62, 309–317 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Schreiber, S., Rosenstiel, P., Albrecht, M., Hampe, J. & Krawczak, M. Genetics of Crohn disease, an archetypal inflammatory barrier disease. Nature Rev. Genet. 6, 376–388 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Frazer, K. A. et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007). This paper describes the current knowledge of human genome variations (the HapMap). This knowledge is essential for designing commercial genotyping platforms and understanding their advantages and limitations.

    Article  CAS  PubMed  Google Scholar 

  14. Manolio, T. A., Brooks, L. D. & Collins, F. S. A HapMap harvest of insights into the genetics of common disease. J. Clin. Invest 118, 1590–1605 (2008). This paper describes the achievements of the HapMap project and the practical implications for complex diseases, including the summary results of GWA studies for 40 diseases and traits.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Alper, C. A. et al. The haplotype structure of the human major histocompatibility complex. Hum. Immunol. 67, 73–84 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Nejentsev, S. et al. Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature 450, 887–892 (2007). This study presents the comprehensive fine-mapping of the MHC region in type 1 diabetes.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Bettelli, E., Korn, T., Oukka, M. & Kuchroo, V. K. Induction and effector functions of TH17 cells. Nature 453, 1051–1057 (2008). This is an excellent review of the newly described T H 17 cell lineage, and the role of T H 17 cells in autoimmunity and inflammation.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Barrett, J. C. et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nature Genet. 40, 955–962 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Cargill, M. et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am. J. Hum. Genet. 80, 273–290 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Franke, A. et al. Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nature Genet. 40, 1319–1323 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Brusko, T. M., Putnam, A. L. & Bluestone, J. A. Human regulatory T cells: role in autoimmune disease and therapeutic opportunities. Immunol. Rev. 223, 371–390 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Sakaguchi, S., Yamaguchi, T., Nomura, T. & Ono, M. Regulatory T cells and immune tolerance. Cell 133, 775–787 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Sadlack, B. et al. Generalized autoimmune disease in interleukin-2-deficient mice is triggered by an uncontrolled activation and proliferation of CD4+ T cells. Eur. J. Immunol. 25, 3053–3059 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Sadlack, B. et al. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 75, 253–261 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Yamanouchi, J. et al. Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity. Nature Genet. 39, 329–337 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3000 shared controls. Nature 447, 661–678 (2007). This paper describes the most extended genome-wide scan performed so far, which includes 17,000 individuals and 7 common diseases. This publication describes several key methodological aspects of GWA studies.

  27. Burton, P. R. et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nature Genet. 39, 1329–1337 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Lowe, C. E. et al. Large-scale genetic fine mapping and genotype–phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes. Nature Genet. 39, 1074–1082 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Todd, J. A. et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nature Genet. 39, 857–864 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. van Heel, D. A. et al. A genome-wide association study for celiac disease identifies risk variants in the region harboring IL2 and IL21. Nature Genet. 39, 827–829 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Vella, A. et al. Localization of a type 1 diabetes locus in the IL2RA/CD25 region by use of tag single-nucleotide polymorphisms. Am. J. Hum. Genet. 76, 773–779 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Fina, D. et al. Interleukin-21 contributes to the mucosal T helper cell type 1 response in celiac disease. Gut 57, 887–892 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Fina, D., Caruso, R., Pallone, F. & Monteleone, G. Interleukin-21 (IL-21) controls inflammatory pathways in the gut. Endocr. Metab Immune. Disord. Drug Targets. 7, 288–291 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Monteleone, G., Pallone, F. & Macdonald, T. T. Interleukin-21: a critical regulator of the balance between effector and regulatory T-cell responses. Trends Immunol. 29, 290–294 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Jiang, H. & Chess, L. Regulation of immune responses by T cells. N. Engl. J. Med. 354, 1166–1176 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Ohashi, P. S. T-cell signalling and autoimmunity: molecular mechanisms of disease. Nature Rev. Immunol. 2, 427–438 (2002).

    Article  CAS  Google Scholar 

  37. Harley, J. B. et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nature Genet. 40, 204–210 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Hunt, K. A. et al. Newly identified genetic risk variants for celiac disease related to the immune response. Nature Genet. 40, 395–402 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Kavvoura, F. K. et al. Cytotoxic T-lymphocyte associated antigen 4 gene polymorphisms and autoimmune thyroid disease: a meta-analysis. J. Clin. Endocrinol. Metab. 92, 3162–3170 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Anjos, S. & Polychronakos, C. Mechanisms of genetic susceptibility to type I diabetes: beyond HLA. Mol. Genet. Metab. 81, 187–195 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Vang, T., Miletic, A. V., Bottini, N. & Mustelin, T. Protein tyrosine phosphatase PTPN22 in human autoimmunity. Autoimmunity 40, 453–461 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Vang, T. et al. Protein tyrosine phosphatases in autoimmunity. Annu. Rev. Immunol. 26, 29–55 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Fitau, J., Boulday, G., Coulon, F., Quillard, T. & Charreau, B. The adaptor molecule Lnk negatively regulates tumor necrosis factor-alpha-dependent VCAM-1 expression in endothelial cells through inhibition of the ERK1 and -2 pathways. J. Biol. Chem. 281, 20148–20159 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Li, Y., He, X., Schembri-King, J., Jakes, S. & Hayashi, J. Cloning and characterization of human Lnk, an adaptor protein with pleckstrin homology and Src homology 2 domains that can inhibit T cell activation. J. Immunol. 164, 5199–5206 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Isenberg, D. A., Manson, J. J., Ehrenstein, M. R. & Rahman, A. Fifty years of anti-ds DNA antibodies: are we approaching journey's end? Rheumatology 46, 1052–1056 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Rahman, A. & Isenberg, D. A. Systemic lupus erythematosus. N. Engl. J. Med. 358, 929–939 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Vojdani, A. Antibodies as predictors of complex autoimmune diseases. Int. J. Immunopathol. Pharmacol. 21, 267–278 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. van der Helm-van Mil A. H., Huizinga, T. W., de Vries, R. R. & Toes, R. E. Emerging patterns of risk factor make-up enable subclassification of rheumatoid arthritis. Arthritis Rheum. 56, 1728–1735 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Raychaudhuri, S. et al. Common variants at CD40 and other loci confer risk of rheumatoid arthritis. Nature Genet. 40, 1216–1223 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Armitage, R. J. et al. CD40L: a multi-functional ligand. Semin. Immunol. 5, 401–412 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. Arpin, C. et al. Generation of memory B cells and plasma cells in vitro. Science 268, 720–722 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Arbuckle, M. R. et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N. Engl. J. Med. 349, 1526–1533 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Moehle, C. et al. Aberrant intestinal expression and allelic variants of mucin genes associated with inflammatory bowel disease. J. Mol. Med. 84, 1055–1066 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Einerhand, A. W. et al. Role of mucins in inflammatory bowel disease: important lessons from experimental models. Eur. J. Gastroenterol. Hepatol. 14, 757–765 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. van der Sluis, S. M. et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131, 117–129 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Wapenaar, M. C. et al. Associations with tight junction genes PARD3 and MAGI2 in Dutch patients point to a common barrier defect for coeliac disease and ulcerative colitis. Gut 57, 463–467 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Fellermann, K. et al. A chromosome 8 gene-cluster polymorphism with low human beta-defensin 2 gene copy number predisposes to Crohn disease of the colon. Am. J. Hum. Genet. 79, 439–448 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Hollox, E. J. et al. Psoriasis is associated with increased β-defensin genomic copy number. Nature Genet. 40, 23–25 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Bowcock, A. M. & Krueger, J. G. Getting under the skin: the immunogenetics of psoriasis. Nature Rev. Immunol. 5, 699–711 (2005).

    Article  CAS  Google Scholar 

  60. Levine, B. & Deretic, V. Unveiling the roles of autophagy in innate and adaptive immunity. Nature Rev. Immunol. 7, 767–777 (2007).

    Article  CAS  Google Scholar 

  61. Lee, H. K., Lund, J. M., Ramanathan, B., Mizushima, N. & Iwasaki, A. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315, 1398–1401 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Niewold, T. B. & Swedler, W. I. Systemic lupus erythematosus arising during interferon-alpha therapy for cryoglobulinemic vasculitis associated with hepatitis C. Clin. Rheumatol. 24, 178–181 (2005).

    Article  PubMed  Google Scholar 

  63. Schmidt, K. N. & Ouyang, W. Targeting interferon-alpha: a promising approach for systemic lupus erythematosus therapy. Lupus 13, 348–352 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Kim, T. et al. Serum levels of interferons in patients with systemic lupus erythematosus. Clin. Exp. Immunol. 70, 562–569 (1987).

    CAS  PubMed Central  PubMed  Google Scholar 

  65. James, J. A. et al. An increased prevalence of Epstein–Barr virus infection in young patients suggests a possible etiology for systemic lupus erythematosus. J. Clin. Invest 100, 3019–3026 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Yamazaki, K. et al. Single nucleotide polymorphisms in TNFSF15 confer susceptibility to Crohn's disease. Hum. Mol. Genet. 14, 3499–3506 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Takedatsu, H. et al. TL1A (TNFSF15) regulates the development of chronic colitis by modulating both T-helper 1 and T-helper 17 activation. Gastroenterology 135, 552–567 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Sun, S. C. Deubiquitylation and regulation of the immune response. Nature Rev. Immunol. 8, 501–511 (2008).

    Article  CAS  Google Scholar 

  69. Boone, D. L. et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nature Immunol. 5, 1052–1060 (2004).

    Article  CAS  Google Scholar 

  70. Lee, E. G. et al. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science 289, 2350–2354 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Turer, E. E. et al. Homeostatic MyD88-dependent signals cause lethal inflammation in the absence of A20. J. Exp. Med. 205, 451–464 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Murphy, P. M. Viral exploitation and subversion of the immune system through chemokine mimicry. Nature Immunol. 2, 116–122 (2001).

    Article  CAS  Google Scholar 

  73. Ascherio, A. et al. Epstein–Barr virus antibodies and risk of multiple sclerosis: a prospective study. JAMA 286, 3083–3088 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Lipton, H. L., Liang, Z., Hertzler, S. & Son, K. N. A specific viral cause of multiple sclerosis: one virus, one disease. Ann. Neurol. 61, 514–523 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Wen, L. et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 455, 1109–1113 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Gregory, S. G. et al. Interleukin 7 receptor α chain (IL7R) shows allelic and functional association with multiple sclerosis. Nature Genet. 39, 1083–1091 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Kallies, A. Distinct regulation of effector and memory T-cell differentiation. Immunol. Cell Biol. 86, 325–332 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Geijtenbeek, T. B., van Vliet, S. J., Engering, A., ' t Hart, B. A. & van Kooyk, Y. Self- and non self-recognition by C-type lectins on dendritic cells. Annu. Rev. Immunol. 22, 33–54 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Vafiadis, P. et al. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nature Genet. 15, 289–292 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Stene, L. C. et al. Rotavirus infection frequency and risk of celiac disease autoimmunity in early childhood: a longitudinal study. Am. J. Gastroenterol. 101, 2333–2340 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Shakoor, N., Michalska, M., Harris, C. A. & Block, J. A. Drug-induced systemic lupus erythematosus associated with etanercept therapy. Lancet 359, 579–580 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Wada, Y. et al. Selective abrogation of Th1 response by STA-5326, a potent IL-12/IL-23 inhibitor. Blood 109, 1156–1164 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Weersma, R. K. et al. Molecular prediction of disease risk and severity in a large Dutch Crohn's disease cohort. Gut 29 Sep 2008 (doi:10.1136/gut.2007.144865).

    Article  PubMed  Google Scholar 

  84. Barcellos, L. F. et al. Clustering of autoimmune diseases in families with a high-risk for multiple sclerosis: a descriptive study. Lancet Neurol. 5, 924–931 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Michou, L., Rat, A. C., Lasbleiz, S., Bardin, T. & Cornelis, F. Prevalence and distribution of autoimmune diseases in 368 rheumatoid arthritis families. J. Rheumatol. 35, 790–796 (2008).

    PubMed  Google Scholar 

  86. Munthe-Kaas, M. C. et al. HLA Dr-Dq haplotypes and the TNFA-308 polymorphism: associations with asthma and allergy. Allergy 62, 991–998 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Jacobson, E. M., Huber, A. & Tomer, Y. The HLA gene complex in thyroid autoimmunity: from epidemiology to etiology. J. Autoimmun. 30, 58–62 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Fernando, M. M. et al. Identification of two independent risk factors for lupus within the MHC in United Kingdom families. PLoS. Genet. 3, e192 (2007).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  89. Hafler, D. A. et al. Risk alleles for multiple sclerosis identified by a genomewide study. N. Engl. J. Med. 357, 851–862 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Liu, Y. et al. A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci. PLoS Genet. 4, e1000041 (2008).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  91. Bowes, J. & Barton, A. Recent advances in the genetics of RA susceptibility. Rheumatology 47, 399–402 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Fisher, S. A. et al. Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn's disease. Nature Genet. 40, 710–712 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Schlesselman, J. J. Case–Control Studies: Design, Conduct, Analysis (Oxford Univ. Press, Oxford, 1992).

    Google Scholar 

  94. Brophy, S. et al. Inflammatory eye, skin, and bowel disease in spondyloarthritis: genetic, phenotypic, and environmental factors. J. Rheumatol. 28, 2667–2673 (2001).

    CAS  PubMed  Google Scholar 

  95. Bernstein, C. N., Wajda, A. & Blanchard, J. F. The clustering of other chronic inflammatory diseases in inflammatory bowel disease: a population-based study. Gastroenterology 129, 827–836 (2005).

    Article  PubMed  Google Scholar 

  96. Spadaccino, A. C. et al. Celiac disease in north Italian patients with autoimmune thyroid diseases. Autoimmunity 41, 116–121 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Freeman, H. J. Adult celiac disease followed by onset of systemic lupus erythematosus. J. Clin. Gastroenterol. 42, 252–255 (2008).

    Article  PubMed  Google Scholar 

  98. Guariso, G. et al. Clinical, subclinical and potential autoimmune diseases in an Italian population of children with coeliac disease. Aliment. Pharmacol. Ther. 26, 1409–1417 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Kero, J., Gissler, M., Hemminki, E. & Isolauri, E. Could TH1 and TH2 diseases coexist? Evaluation of asthma incidence in children with coeliac disease, type 1 diabetes, or rheumatoid arthritis: a register study. J. Allergy Clin. Immunol. 108, 781–783 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Ch'ng, C. L., Jones, M. K. & Kingham, J. G. Celiac disease and autoimmune thyroid disease. Clin. Med. Res. 5, 184–192 (2007).

    Article  PubMed Central  PubMed  Google Scholar 

  101. Lee, F. I., Bellary, S. V. & Francis, C. Increased occurrence of psoriasis in patients with Crohn's disease and their relatives. Am. J. Gastroenterol. 85, 962–963 (1990).

    CAS  PubMed  Google Scholar 

  102. Weng, X., Liu, L., Barcellos, L. F., Allison, J. E. & Herrinton, L. J. Clustering of inflammatory bowel disease with immune mediated diseases among members of a northern California-managed care organization. Am. J. Gastroenterol. 102, 1429–1435 (2007).

    Article  PubMed  Google Scholar 

  103. Molina, M. J. et al. Prevalence of systemic lupus erythematosus and associated comorbidities in Puerto Rico. J. Clin. Rheumatol. 13, 202–204 (2007).

    Article  PubMed Central  PubMed  Google Scholar 

  104. Barker, J. M. Clinical review: type 1 diabetes-associated autoimmunity: natural history, genetic associations, and screening. J. Clin. Endocrinol. Metab 91, 1210–1217 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Cronin, C. C. et al. High prevalence of celiac disease among patients with insulin-dependent (type I) diabetes mellitus. Am. J. Gastroenterol. 92, 2210–2212 (1997).

    CAS  PubMed  Google Scholar 

  106. Hasegawa, K. et al. Variations in the C3, C3a receptor, and C5 genes affect susceptibility to bronchial asthma. Hum. Genet. 115, 295–301 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Moffatt, M. F. et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448, 470–473 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Duerr, R. H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461–1463 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Franke, A. et al. Systematic association mapping identifies NELL1 as a novel IBD disease gene. PLoS ONE 2, e691 (2007).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  110. Franke, A. et al. Replication of signals from recent studies of Crohn's disease identifies previously unknown disease loci for ulcerative colitis. Nature Genet. 40, 713–715 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Hampe, J. et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nature Genet. 39, 207–211 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Kugathasan, S. et al. Loci on 20q13 and 21q22 are associated with pediatric-onset inflammatory bowel disease. Nature Genet. 40, 1211–1215 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Libioulle, C. et al. Novel Crohn disease locus identified by genome-wide association maps to a gene desert on 5p13.1 and modulates expression of PTGER4. PLoS Genet. 3, e58 (2007).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  114. Parkes, M. et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility. Nature Genet. 39, 830–832 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Raelson, J. V. et al. Genome-wide association study for Crohn's disease in the Quebec founder population identifies multiple validated disease loci. Proc. Natl Acad. Sci. USA 104, 14747–14752 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Rioux, J. D. et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nature Genet. 39, 596–604 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Weersma, R. K. et al. ATG16L1 and IL23R are associated with inflammatory bowel diseases but not with celiac disease in the Netherlands. Am. J. Gastroenterol. 103, 621–627 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Zhernakova, A. et al. Genetic analysis of innate immunity in Crohn's disease and ulcerative colitis identifies two susceptibility loci harboring CARD9 and IL18RAP. Am. J. Hum. Genet. 82, 1202–1210 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Dideberg, V. et al. An insertion-deletion polymorphism in the interferon regulatory factor 5 (IRF5) gene confers risk of inflammatory bowel diseases. Hum. Mol. Genet. 16, 3008–3016 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Capon, F. et al. Identification of ZNF313/RNF114 as a novel psoriasis susceptibility gene. Hum. Mol. Genet. 17, 1938–1945 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Hollox, E. J. et al. Psoriasis is associated with increased β-defensin genomic copy number. Nature Genet. 40, 23–25 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Zhernakova, A. et al. Novel association in chromosome 4q27 region with rheumatoid arthritis and confirmation of type 1 diabetes point to a general risk locus for autoimmune diseases. Am. J. Hum. Genet. 81, 1284–1288 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. Remmers, E. F. et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N. Engl. J. Med. 357, 977–986 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Plenge, R. M. et al. TRAF1–C5 as a risk locus for rheumatoid arthritis—a genomewide study. N. Engl. J. Med. 357, 1199–1209 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  125. Kochi, Y. et al. A functional variant in FCRL3, encoding Fc receptor-like 3, is associated with rheumatoid arthritis and several autoimmunities. Nature Genet. 37, 478–485 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Thomson, W. et al. Rheumatoid arthritis association at 6q23. Nature Genet. 39, 1431–1433 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Lee, C. C. et al. Interleukin-18 gene polymorphism, but not interleukin-2 gene polymorphism, is associated with rheumatoid arthritis. Immunogenetics 59, 433–439 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Plenge, R. M. et al. Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nature Genet. 39, 1477–1482 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. Dieguez-Gonzalez, R. et al. Association of interferon regulatory factor 5 haplotypes, similar to that found in systemic lupus erythematosus, in a large subgroup of patients with rheumatoid arthritis. Arthritis Rheum. 58, 1264–1274 (2008).

    Article  CAS  PubMed  Google Scholar 

  130. Graham, D. S. et al. Association of LY9 in UK and Canadian SLE families. Genes Immun. 9, 93–102 (2008).

    Article  CAS  Google Scholar 

  131. Hom, G. et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N. Engl. J. Med. 358, 900–909 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Kozyrev, S. V. et al. Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nature Genet. 40, 211–216 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Nath, S. K. et al. A nonsynonymous functional variant in integrin-αM (encoded by ITGAM) is associated with systemic lupus erythematosus. Nature Genet. 40, 152–154 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Sigurdsson, S. et al. A common STAT4 risk haplotype for systemic lupus erythematosus is over-expressed, correlates with anti-dsDNA production and shows additive effects with two IRF5 risk alleles. Hum. Mol. Genet. 17, 2868–2876 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  135. Graham, D. S. et al. Polymorphism at the TNF superfamily gene TNFSF4 confers susceptibility to systemic lupus erythematosus. Nature Genet. 40, 83–89 (2008).

    Article  PubMed  CAS  Google Scholar 

  136. Hakonarson, H. et al. A genome-wide association study identifies KIAA0350 as a type 1 diabetes gene. Nature 448, 591–594 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Hakonarson, H. et al. A novel susceptibility locus for type 1 diabetes on chr12q13 identified by a genome-wide association study. Diabetes 57, 1143–1146 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Smyth, D. J. et al. A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nature Genet. 38, 617–619 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Dideberg, V. et al. An insertion-deletion polymorphism in the interferon regulatory factor 5 (IRF5) gene confers risk of inflammatory bowel diseases. Hum. Mol. Genet. 16, 3008–3016 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Dubois, P. C. & van Heel, D. A. New susceptibility genes for ulcerative colitis. Nature Genet. 40, 686–688 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Senior and M. Wapenaar for their help preparing this manuscript. Our work is supported by grants from the Celiac Disease Consortium (an innovative cluster approved by the Netherlands Genomics Initiative and partly funded by the Dutch Government, grant BSIK03009 to C.W.) and the Netherlands Organization for Scientific Research (NWO-VICI grant 918.66.620 to C.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cisca Wijmenga.

Supplementary information

Related links

Related links

DATABASES

OMIM

asthma

coeliac disease

Graves' disease

Hashimoto's disease

multiple sclerosis

rheumatoid arthritis

type 1 diabetes

FURTHER INFORMATION

Cisca Wijmenga's homepage

HapMap

Database for Annotation, Visualization and Integrated Discovery (DAVID) Bioinformatics Resources

Web-based Gene Set Analysis Toolkit (Webgestalt)

Gene Ontology

Catalogue of Published Genome-wide Association Studies

SUPPLEMENTARY INFORMATION

See online article

S1 (table)

S2 (table)

S3 (figure)

S4 (table)

S5 (Excel file)

Glossary

Innate immune system

An immediate nonspecific immune response to foreign infectious agents. It includes chemical defence mechanisms (for example, mucus and complement production), as well as cellular functions, such as phagocytosis by macrophages and neutrophils.

Adaptive immune system

A specific immune response initiated by highly specific receptors that are present on B and T cells, which recognize antigens. There is extensive crosstalk between the innate and adaptive immune responses.

Ascertainment bias

A false conclusion that is made as a result of nonrandom sampling.

Heritability

The proportion of the total phenotypic variation for a given characteristic in a population that can be attributed to genetic variance among individuals.

Genetic heterogeneity

(Also called locus heterogeneity). A situation in which variation in different genes might cause identical or similar forms of the disease in different individuals.

Penetrance

The probability of observing a specific phenotype in individuals who carry a particular genotype. If this probability is less than one for all genotypes of a variant, then the variant has incomplete penetrance.

Genome-wide association study

(GWA study). A large-scale genotyping analysis of markers across the human genome, which is designed to identify genetic association with diseases or observable traits.

Genome-wide non-synonymous SNP scan

Genome-wide scan for disease association that includes only non-synonymous SNPs (nsSNPs).

Linkage analysis

The process of mapping genes by typing genetic markers in families to identify chromosome regions that are associated with disease or trait values within pedigrees more often than would be expected by chance. Such linked regions are more likely to contain a causal genetic variant.

Functional candidate gene

A gene that might be involved in a particular disease because of its biological relevance.

Identical by descent

Describes multiple alleles that are identical because they arose from the same allele in an earlier generation.

Population attributable risk

(PAR). Calculated using the following formula, where f is the allele freqency in the population, and RR is the relative risk:

Linkage disequilibrium

(LD). The nonrandom association of genetic marker alleles. Two markers are in LD when some combinations of alleles in a population occur more or less frequently than would be expected if random assortment occurred.

Major histocompatibility complex

(MHC). A 4-Mb region of human chromosome 6 that contains many genes with immunological functions. It is encoded by the human leukocyte antigen (HLA) locus.

Deep sequence

Massive parallel sequencing of the same DNA target with new-generation sequencing platforms, such as the Roche 454 FLX system, the Illumina Genome Analyzer and the Applied Biosystems SOLiD system.

Meta-analysis

An approach that combines the results of several studies that address a set of related research hypotheses to overcome the problem of reduced statistical power in studies with small sample sizes.

Common disease–common variant hypothesis

This states that many genetic variants that underlie complex diseases are common and are therefore susceptible to detection by population association studies. An alternative possibility is that the genetic contributions to complex diseases arise from many variants, all of which are rare.

Genetical genomics

An approach that brings together genetic analysis and gene expression studies by directly characterizing the genetic influence of gene expression.

TH1 cells

A subset of T-helper cells that produce interferon-γ (and other cytokines) and that activate macrophages.

TH17 cells

A subset of CD4+ T-helper cells that produce interleukin 17 (IL-17) and that are thought to be important in inflammatory and autoimmune diseases.

Regulatory T cells

(Treg cells). A subset of CD4+ T-helper cells that suppresses or regulates effector T cells and other immune cells. The absence or presence of dysfunctional Treg cells are associated with severe autoimmunity.

Auto-antibody seropositivity

The presence of antibodies that are directed against one or more of an individual's own proteins.

Autophagy

A cellular process of degradation of cellular components that occurs by transporting the components to lysosomes. This process maintains a balance between the synthesis and degradation of cellular products, and is also involved in the degradation of intracellular pathogens.

LD block

A segment of DNA with markers that are in linkage disequilbrium (LD) with each other.

Prospective epidemiological studies

A research study that, over a period of time, follows groups of individuals who are alike in many ways but differ by certain characteristics, and compares them for a particular outcome.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhernakova, A., van Diemen, C. & Wijmenga, C. Detecting shared pathogenesis from the shared genetics of immune-related diseases. Nat Rev Genet 10, 43–55 (2009). https://doi.org/10.1038/nrg2489

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2489

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing