Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Strategies for silencing human disease using RNA interference

Key Points

  • Small interfering RNAs (siRNAs) and short hairpin RNAs (shRNAs) serve as the effector molecules of RNA interference (RNAi). Important mechanistic advances have recently been made in understanding the diverse ways in which RNAi pathways regulate gene expression.

  • The potency and specificity of chemically synthesized siRNAs and expressed shRNAs are increased by designing these molecules so that they serve as substrates for the RNase III enzymes Drosha and Dicer. Expressed shRNAs can be designed to mimic the structures of endogenous microRNA (miRNA) transcripts.

  • Sequence-dependent off-target and immunostimulatory effects are concerns that must be addressed when designing siRNAs and shRNAs for therapeutic purposes. Saturation of RNAi pathway components should also be avoided by optimizing siRNA dosage and shRNA expression levels.

  • siRNAs are delivered systemically through lipid-based carriers and liganded nanoparticles. New methods have been developed that allow siRNAs to be targeted to specific cell-surface receptors.

  • Viral delivery vectors facilitate the stable expression of shRNAs in therapeutically relevant settings. Lentiviral, adenoviral and adeno-associated viral vectors are in development for RNAi gene-therapy strategies.

  • Clinical trials using RNAi-based therapies are currently under way for wet, age-related macular degeneration and respiratory syncytial virus infection. At present, RNAi-based therapies for other viral infections, cancer and neurodegenerative diseases are in preclinical development, and additional clinical trials will be initiated during 2007.

Abstract

Since the first description of RNA interference (RNAi) in animals less than a decade ago, there has been rapid progress towards its use as a therapeutic modality against human diseases. Advances in our understanding of the mechanisms of RNAi and studies of RNAi in vivo indicate that RNAi-based therapies might soon provide a powerful new arsenal against pathogens and diseases for which treatment options are currently limited. Recent findings have highlighted both promise and challenges in using RNAi for therapeutic applications. Design and delivery strategies for RNAi effector molecules must be carefully considered to address safety concerns and to ensure effective, successful treatment of human diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of RNA interference in mammalian cells.
Figure 2: RISC loading and activation.
Figure 3: RNA interference effector molecules.
Figure 4: Immunostimulatory effects of RNA interference.
Figure 5: Delivery of small interfering RNAs.
Figure 6: Viral delivery of short hairpin RNAs.

Similar content being viewed by others

References

  1. Fire, A. et al. Potent and specific genetic interference by double stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998). This Nobel Prize-winning landmark paper provides the first description of the phenomenon of RNAi.

    Article  CAS  PubMed  Google Scholar 

  2. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001). This work provides the first description of RNAi in mammalian cells.

    Article  CAS  PubMed  Google Scholar 

  3. Hannon, G. J. & Rossi, J. J. Unlocking the potential of the human genome with RNA interference. Nature 431, 371–378 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Check, E. A crucial test. Nature Med. 11, 243–244 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. McFarland, T. J., Zhang, Y., Appukuttan, B. & Stout, J. T. Gene therapy for proliferative ocular diseases. Expert Opin. Biol. Ther. 4, 1053–1058 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Bitko, V., Musiyenko, A., Shulyayeva, O. & Barik, S. Inhibition of respiratory viruses by nasally administered siRNA. Nature Med. 11, 50–55 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Rossi, J. J. RNAi as a treatment for HIV-1 infection. Biotechniques 40, s25–s29 (2006).

    Article  CAS  Google Scholar 

  8. Dykxhoorn, D. M. & Lieberman, J. Silencing viral infection. PLoS Med. 3, e242 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Raoul, C., Barker, S. D. & Aebischer, P. Viral-based modeling and correction of neurodegenerative diseases by RNA interference. Gene Ther. 13, 487–495 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Pai, S. I. et al. Prospects of RNA interference therapy for cancer. Gene Ther. 13, 464–477 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Amarzguioui, M., Rossi, J. J. & Kim, D. Approaches for chemically synthesized siRNA and vector-mediated RNAi. FEBS Lett. 579, 5974–5981 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. de Veer, M. J., Sledz, C. A. & Williams, B. R. Detection of foreign RNA: implications for RNAi. Immunol. Cell Biol. 83, 224–228 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Grimm, D. et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441, 537–541 (2006). This paper describes the in vivo toxicity of long-term, high-level shRNA expression in mice.

    Article  CAS  PubMed  Google Scholar 

  14. Behlke, M. A. Progress towards in vivo use of siRNAs. Mol. Ther. 13, 644–670 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Meister, G. & Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Matzke, M. A. & Birchler, J. A. RNAi-mediated pathways in the nucleus. Nature Rev. Genet. 6, 24–35 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Wassenegger, M. The role of the RNAi machinery in heterochromatin formation. Cell 122, 13–16 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Zamore, P. D., Tuschl, T., Sharp, P. A. & Bartel, D. P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R. & Tuschl, T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110, 563–574 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Matranga, C., Tomari, Y., Shin, C., Bartel, D. P. & Zamore, P. D. Passenger-strand cleavage facilitates assembly of siRNA into AGO2-containing RNAi enzyme complexes. Cell 123, 607–620 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Rand, T. A., Petersen, S., Du, F. & Wang, X. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123, 621–629 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Parker, J. S., Roe, S. M. & Barford, D. Structural insights into mRNA recognition from a PIWI domain–siRNA guide complex. Nature 434, 663–666 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ma, J. B., Ye, K. & Patel, D. J. Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 429, 318–322 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Elbashir, S. M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15, 188–200 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Orban, T. I. & Izaurralde, E. Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome. RNA 11, 459–469 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hutvagner, G. & Zamore, P. D. A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Bartel, D. P. & Chen, C. Z. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nature Rev. Genet. 5, 396–400 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Liu, J., Valencia-Sanchez, M. A., Hannon, G. J. & Parker, R. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nature Cell Biol. 7, 719–723 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Yekta, S., Shih, I. H. & Bartel, D. P. MicroRNA-directed cleavage of H oxb8 mRNA. Science 304, 594–596 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Borchert, G. M., Lanier, W. & Davidson, B. L. RNA polymerase III transcribes human microRNAs. Nature Struct. Mol. Biol. 13, 1097–1101 (2006).

    Article  CAS  Google Scholar 

  36. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Gregory, R. I. et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235–240 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Yi, R., Qin, Y., Macara, I. G. & Cullen, B. R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17, 3011–3016 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E. & Kutay, U. Nuclear export of microRNA precursors. Science 303, 95–98 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Chendrimada, T. P. et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740–744 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee, Y. et al. The role of PACT in the RNA silencing pathway. EMBO J. 25, 522–532 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Preall, J. B. & Sontheimer, E. J. RNAi: RISC gets loaded. Cell 123, 543–245 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Silva, J. M. et al. Second-generation shRNA libraries covering the mouse and human genomes. Nature Genet. 37, 1281–1288 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Morris, K. V., Chan, S. W., Jacobsen, S. E. & Looney, D. J. Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305, 1289–1292 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Kim, D. H., Villeneuve, L. M., Morris, K. V. & Rossi, J. J. Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells. Nature Struct. Mol. Biol. 13, 793–797 (2006).

    Article  CAS  Google Scholar 

  47. Janowski, B. A. et al. Involvement of AGO1 and AGO2 in mammalian transcriptional silencing. Nature Struct. Mol. Biol. 13, 787–792 (2006).

    Article  CAS  Google Scholar 

  48. Ting, A. H., Schuebel, K. E., Herman, J. G. & Baylin, S. B. Short double-stranded RNA induces transcriptional gene silencing in human cancer cells in the absence of DNA methylation. Nature Genet. 37, 906–910 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Weinberg, M. S. et al. The antisense strand of small interfering RNAs directs histone methylation and transcriptional gene silencing in human cells. RNA 12, 256–262 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vastenhouw, N. L. et al. Gene expression: long-term gene silencing by RNAi. Nature 442, 882 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Kim, D. H. et al. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nature Biotechnol. 23, 222–226 (2005).

    Article  CAS  Google Scholar 

  52. Siolas, D. et al. Synthetic shRNAs as potent RNAi triggers. Nature Biotechnol. 23, 227–231 (2005).

    Article  CAS  Google Scholar 

  53. Marques, J. T. et al. A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells. Nature Biotechnol. 24, 559–565 (2006).

    Article  CAS  Google Scholar 

  54. Brummelkamp, T. R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Paddison, P. J., Caudy, A. A., Bernstein, E., Hannon, G. J. & Conklin, D. S. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 16, 948–958 (2002). References 54 and 55 describe stable expression systems for RNAi.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zeng, Y., Wagner, E. J. & Cullen, B. R. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell 9, 1327–1333 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Sarnow, P., Jopling, C. L., Norman, K. L., Schutz, S. & Wehner, K. A. MicroRNAs: expression, avoidance and subversion by vertebrate viruses. Nature Rev. Microbiol. 4, 651–659 (2006).

    Article  CAS  Google Scholar 

  58. Jackson, A. L. et al. Widespread siRNA 'off-target' transcript silencing mediated by seed region sequence complementarity. RNA 12, 1179–1187 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Birmingham, A. et al. 3' UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nature Methods 3, 199–204 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Hornung, V. et al. Sequence-specific potent induction of IFN-α by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nature Med. 11, 263–270 (2005). This work describes the detection of immunostimulatory motifs in siRNA sequences through TLRs.

    Article  CAS  PubMed  Google Scholar 

  61. Manche, L., Green, S. R., Schmedt, C. & Mathews, M. B. Interactions between double-stranded RNA regulators and the protein kinase DAI. Mol. Cell. Biol. 12, 5238–5248 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Seth, R. B., Sun, L. & Chen, Z. J. Antiviral innate immunity pathways. Cell Res. 16, 141–147 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Judge, A. D. et al. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nature Biotechnol. 23, 457–462 (2005).

    Article  CAS  Google Scholar 

  64. Kim, D. H. et al. Interferon induction by siRNAs and ssRNAs synthesized by phage polymerase. Nature Biotechnol. 22, 321–325 (2004).

    Article  CAS  Google Scholar 

  65. Robbins, M. A. et al. Stable expression of shRNAs in human CD34+ progenitor cells can avoid induction of interferon responses to siRNAs in vitro. Nature Biotechnol. 24, 566–571 (2006).

    Article  CAS  Google Scholar 

  66. An, D. S. et al. Optimization and functional effects of stable short hairpin RNA expression in primary human lymphocytes via lentiviral vectors. Mol. Ther. 14, 494–504 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Czauderna, F. et al. Structural variations and stabilizing modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res. 31, 2705–2716 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Morrissey, D. V. et al. Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication. Hepatology 41, 1349–1356 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Chiu, Y. L. & Rana, T. M. siRNA function in RNAi: a chemical modification analysis. RNA 9, 1034–1048 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Morrissey, D. V. et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nature Biotechnol. 23, 1002–1007 (2005).

    Article  CAS  Google Scholar 

  71. Soutschek, J. et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432, 173–178 (2004). This work describes a straightforward and effective method for intravenous systemic delivery of RNAi.

    Article  CAS  PubMed  Google Scholar 

  72. Zimmermann, T. S. et al. RNAi-mediated gene silencing in non-human primates. Nature 441, 111–114 (2006). This paper describes the potency and longevity of systemic delivery of RNAi in non-human primates.

    Article  CAS  PubMed  Google Scholar 

  73. Song, E. et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nature Biotechnol. 23, 709–717 (2005).

    Article  CAS  Google Scholar 

  74. McNamara, J. O. et al. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nature Biotechnol. 24, 1005–1015 (2006).

    Article  CAS  Google Scholar 

  75. Chu, T. C., Twu, K. Y., Ellington, A. D. & Levy, M. Aptamer mediated siRNA delivery. Nucleic Acids Res. 34, e73 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hu-Lieskovan, S., Heidel, J. D., Bartlett, D. W., Davis, M. E. & Triche, T. J. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing's sarcoma. Cancer Res. 65, 8984–8992 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Morris, K. V. & Rossi, J. J. Lentiviral-mediated delivery of siRNAs for antiviral therapy. Gene Ther. 13, 553–558 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Grimm, D. & Kay, M. A. Therapeutic short hairpin RNA expression in the liver: viral targets and vectors. Gene Ther. 13, 563–575 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Lee, N. S. et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nature Biotechnol. 20, 500–505 (2002).

    Article  CAS  Google Scholar 

  80. Novina, C. D. et al. siRNA-directed inhibition of HIV-1 infection. Nature Med. 8, 681–686 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Jacque, J., Triques, K. & Stevenson, M. Modulation of HIV-1 replication by RNA interference. Nature 418, 435–438 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Coburn, G. A. & Cullen, B. R. Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference. J. Virol. 76, 9225–9231 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Martinez, J. & Tuschl, T. RISC is a 5' phosphomonoester-producing RNA endonuclease. Genes Dev. 18, 975–980 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Huang, Y. et al. The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nature Med. 2, 1240–1243 (1996).

    Article  CAS  PubMed  Google Scholar 

  85. Li, M. J. et al. Long-term inhibition of HIV-1 infection in primary hematopoietic cells by lentiviral vector delivery of a triple combination of anti-HIV shRNA, anti-CCR5 ribozyme, and a nucleolar-localizing TAR decoy. Mol. Ther. 12, 900–909 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Zhang, W. et al. Inhibition of respiratory syncytial virus infection with intranasal siRNA nanoparticles targeting the viral NS1 gene. Nature Med. 11, 56–62 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Palliser, D. et al. An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection. Nature 439, 89–94 (2006). This paper describes the efficacy of topical delivery of RNAi as a microbicide.

    Article  CAS  PubMed  Google Scholar 

  88. Xia, H. et al. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nature Med. 10, 816–820 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Raoul, C. et al. Lentiviral-mediated silencing of Sod1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nature Med. 11, 423–428 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Ralph, G. S. et al. Silencing mutant Sod1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nature Med. 11, 429–433 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Pai, S. I. et al. Prospects of RNA interference therapy for cancer. Gene Ther. 13, 464–477 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Landen, C. N. et al. Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res. 65, 6910–6918 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Dykxhoorn, D. M. & Lieberman, J. Knocking down disease with siRNAs. Cell 126, 231–235 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of our laboratory for discussions and support. We apologize to any colleagues whose work could not be cited due to space limitations. This work was supported by grants from the US National Institutes of Health to J.J.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Rossi.

Ethics declarations

Competing interests

Daniel H. Kim & John J. Rossi. Strategies for silencing human disease using RNA interference. Nature Reviews Genetics 8, 173–184 (2007); doi:10.1038/nrg2006

John J. Rossi is a co-founder and equity holder in Calando Pharmaceuticals, Inc. (Pasadena, California, USA) — an RNAi company.

Related links

Related links

DATABASES

OMIM

ALS

SCA1

FURTHER INFORMATION

Ambion RNAi Interference Resource

Gene Link RNAi Explorer

Integrated DNA Technologies RNAi design tools

Invitrogen BLOCK-iT RNAi Designer

Promega siRNA Target Designer

siRNA at the Whitehead Institute

Glossary

Short hairpin RNAs

(shRNAs). A class of small RNAs with a stem of 19–29 base pairs and a loop of 4–10 nucleotides that are processed by Dicer into small interfering RNAs. shRNAs are expressed from vectors to induce RNAi.

Interferons

A class of glycoproteins that are upregulated in response to exogenous ssRNA or dsRNA as a cellular defence mechanism against RNA viral infection.

Processing bodies

Cytoplasmic bodies that contain enzymes involved in mRNA turnover, such as the decapping enzymes DCP1 and DCP2, and sequester mRNAs from the translational machinery.

Polycistronic

A single RNA molecule that can generate several products. For miRNAs, a single polycistronic transcript contains multiple stem-loop structures encoding separate miRNAs.

Plasmacytoid dendritic cells

Cells of the immune system that recognize foreign pathogens through Toll-like receptors and other pattern-recognition receptors.

Endosome

A vesicle formed during the incorporation of extracellular material by endocytosis. Toll-like receptors are found in endosomal compartments.

Nanoparticle

Nanometre-scale particles that are formulated from polymers or phospholipids and are used as delivery vehicles for therapeutic applications.

Aptamer

RNA or DNA oligonucleotides selected from random pools of sequences that bind to specific receptors on the basis of their secondary structure.

Episome

A double-stranded, circular DNA molecule that replicates in the nucleus without integrating into the host genome.

Pseudotyping

Changing the ability of a viral vector to bind cell-surface receptors by altering its envelope proteins.

Hammerhead ribozyme

Small, self-cleaving catalytic RNAs with distinct secondary structures and highly conserved core residues that mediate cleavage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, D., Rossi, J. Strategies for silencing human disease using RNA interference. Nat Rev Genet 8, 173–184 (2007). https://doi.org/10.1038/nrg2006

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2006

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing