Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Obesity and cancer—mechanisms underlying tumour progression and recurrence

Key Points

  • The current notion that obesity is a major risk factor for development of, and mortality associated with a subset of cancers is well appreciated; however, detailed mechanistic insights underlying this relationship are still lacking

  • Adipose tissues that influence functions of cancer cells, such as growth, metastasis and recurrence, are an integral part of the tumour microenvironment

  • Heterotypic signals between cancer-associated adipocytes and cancer cells provide a permissive niche for the growth and metastasis of tumours

  • Obesity-related inflammation is a plausible link between obesity and cancer

  • Metabolic symbiosis between stromal adipocytes and cancer cells may account, in part, for the link between obesity and cancer

  • The effects of obesity on cancer progression might be specifically curbed through weight-loss interventions, such as exercise or medication

Abstract

Over the past several years, the field of cancer research has directed increased interest towards subsets of obesity-associated tumours, which include mammary, renal, oesophageal, gastrointestinal and reproductive cancers in both men and women. The increased risk of breast cancer that is associated with obesity has been widely reported; this has drawn much attention and as such, warrants investigation of the key mechanisms that link the obese state with cancer aetiology. For instance, the obese setting provides a unique adipose tissue microenvironment with concomitant systemic endocrine alterations that favour both tumour initiation and progression. Major metabolic differences exist within tumours that distinguish them from non-transformed healthy tissues. Importantly, considerable metabolic differences are induced by tumour cells in the stromal vascular fraction that surrounds them. The precise mechanisms that underlie the association of obesity with cancer and the accompanying metabolic changes that occur in the surrounding microenvironment remain elusive. Nonetheless, specific therapeutic agents designed for patients with obesity who develop tumours are clearly needed. This Review discusses recent advances in understanding the contributions of obesity to cancer and their implications for tumour treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reciprocal signalling between cancer-associated adipocytes and cancer cells.
Figure 2: Potential consequences of obesity-induced dysfunction of adipose tissue on tumour initiation, progression and recurrence.

Similar content being viewed by others

References

  1. Unger, R. H. & Scherer, P. E. Gluttony, sloth and the metabolic syndrome: a roadmap to lipotoxicity. Trends Endocrinol. Metab. 21, 345–352 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Parekh, N., Chandran, U. & Bandera, E. V. Obesity in cancer survival. Annu. Rev. Nutr. 32, 311–342 (2012).

    CAS  PubMed  Google Scholar 

  3. Park, J., Euhus, D. M. & Scherer, P. E. Paracrine and endocrine effects of adipose tissue on cancer development and progression. Endocr. Rev. 32, 550–570 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Barlow, W. E. et al. Prospective breast cancer risk prediction model for women undergoing screening mammography. J. Natl Cancer Inst. 98, 1204–1214 (2006).

    PubMed  Google Scholar 

  5. Calle, E. E., Rodriguez, C., Walker-Thurmond, K. & Thun, M. J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of US adults. N. Engl. J. Med. 348, 1625–1638 (2003).

    PubMed  Google Scholar 

  6. Zhang, Y. et al. Stromal progenitor cells from endogenous adipose tissue contribute to pericytes and adipocytes that populate the tumor microenvironment. Cancer Res. 72, 5198–5208 (2012).

    CAS  PubMed  Google Scholar 

  7. Zheng, Q. et al. Leptin receptor maintains cancer stem-like properties in triple negative breast cancer cells. Endocr. Relat. Cancer 20, 797–808 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Park, E. J. et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140, 197–208 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Campbell, P. T. et al. Impact of body mass index on survival after colorectal cancer diagnosis: the Cancer Prevention Study–II Nutrition Cohort. J. Clin. Oncol. 30, 42–52 (2012).

    PubMed  Google Scholar 

  10. Bastarrachea, J., Hortobagyi, G. N., Smith, T. L., Kau, S. W. & Buzdar, A. U. Obesity as an adverse prognostic factor for patients receiving adjuvant chemotherapy for breast cancer. Ann. Intern. Med. 120, 18–25 (1994).

    CAS  PubMed  Google Scholar 

  11. Meyerhardt, J. A. et al. Impact of body mass index on outcomes and treatment-related toxicity in patients with stage II and III rectal cancer: findings from Intergroup Trial 0114. J. Clin. Oncol. 22, 648–657 (2004).

    PubMed  Google Scholar 

  12. Semenkovich, C. F. Insulin resistance and atherosclerosis. J. Clin. Invest. 116, 1813–1822 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Berg, A. H. & Scherer, P. E. Adipose tissue, inflammation, and cardiovascular disease. Circ. Res. 96, 939–949 (2005).

    CAS  PubMed  Google Scholar 

  14. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  15. Ostman, A. & Augsten, M. Cancer-associated fibroblasts and tumor growth—bystanders turning into key players. Curr. Opin. Genet. Dev. 19, 67–73 (2009).

    PubMed  Google Scholar 

  16. Lewis, C. E. & Pollard, J. W. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 66, 605–612 (2006).

    CAS  PubMed  Google Scholar 

  17. Nieman, K. M. et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 17, 1498–1503 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Tessitore, L. et al. Adipocyte expression and circulating levels of leptin increase in both gynaecological and breast cancer patients. Int. J. Oncol. 24, 1529–1535 (2004).

    CAS  PubMed  Google Scholar 

  19. Park, J. & Scherer, P. E. Adipocyte-derived endotrophin promotes malignant tumor progression. J. Clin. Invest. 122, 4243–4256 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Nieman, K. M., Romero, I. L., Van Houten, B. & Lengyel, E. Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochim. Biophys. Acta 1831, 1533–1541 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wilson, W. R. & Hay, M. P. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer 11, 393–410 (2011).

    CAS  PubMed  Google Scholar 

  22. Harris, A. L. Hypoxia—a key regulatory factor in tumour growth. Nat. Rev. Cancer 2, 38–47 (2002).

    CAS  PubMed  Google Scholar 

  23. Rutkowski, J. M., Davis, K. E. & Scherer, P. E. Mechanisms of obesity and related pathologies: the macro- and microcirculation of adipose tissue. FEBS J. 276, 5738–5746 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Halberg, N. et al. Hypoxia-inducible factor 1α induces fibrosis and insulin resistance in white adipose tissue. Mol. Cell Biol. 29, 4467–4483 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Khan, T. et al. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol. Cell Biol. 29, 1575–1591 (2009).

    CAS  PubMed  Google Scholar 

  26. Sun, K., Tordjman, J., Clement, K. & Scherer, P. E. Fibrosis and adipose tissue dysfunction. Cell. Metab. 18, 470–477 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Park, J. & Scherer, P. E. Endotrophin—a novel factor linking obesity with aggressive tumor growth. Oncotarget 3, 1487–1488 (2012).

    PubMed  PubMed Central  Google Scholar 

  28. Iyengar, P. et al. Adipocyte-derived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. J. Clin. Invest. 115, 1163–1176 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Iyengar, P. et al. Adipocyte-secreted factors synergistically promote mammary tumorigenesis through induction of anti-apoptotic transcriptional programs and proto-oncogene stabilization. Oncogene 22, 6408–6423 (2003).

    CAS  PubMed  Google Scholar 

  30. Sun, K., Halberg, N., Khan, M., Magalang, U. J. & Scherer, P. E. Selective inhibition of hypoxia-inducible factor 1α ameliorates adipose tissue dysfunction. Mol. Cell Biol. 33, 904–917 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kusminski, C. M. et al. MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity. Nat. Med. 18, 1539–1549 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Neels, J. G., Thinnes, T. & Loskutoff, D. J. Angiogenesis in an in vivo model of adipose tissue development. FASEB J. 18, 983–985 (2004).

    CAS  PubMed  Google Scholar 

  33. Brown, J. M. & McIntosh, M. K. Conjugated linoleic acid in humans: regulation of adiposity and insulin sensitivity. J. Nutr. 133, 3041–3046 (2003).

    CAS  PubMed  Google Scholar 

  34. Naugler, W. E. & Karin, M. The wolf in sheep's clothing: the role of interleukin-6 in immunity, inflammation and cancer. Trends Mol. Med. 14, 109–119 (2008).

    CAS  PubMed  Google Scholar 

  35. Andarawewa, K. L. et al. Stromelysin-3 is a potent negative regulator of adipogenesis participating to cancer cell–adipocyte interaction/crosstalk at the tumor invasive front. Cancer Res. 65, 10862–10871 (2005).

    CAS  PubMed  Google Scholar 

  36. Dirat, B. et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 71, 2455–2465 (2011).

    CAS  PubMed  Google Scholar 

  37. Wyckoff, J. et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res. 64, 7022–7029 (2004).

    CAS  PubMed  Google Scholar 

  38. Zhang, X. H. et al. Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell 154, 1060–1073 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Cufi, S. et al. Metformin-induced preferential killing of breast cancer initiating CD44+CD24−/low cells is sufficient to overcome primary resistance to trastuzumab in HER2+ human breast cancer xenografts. Oncotarget 3, 395–398 (2012).

    PubMed  PubMed Central  Google Scholar 

  40. Singh, A. & Settleman, J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29, 4741–4751 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Frank, N. Y., Schatton, T. & Frank, M. H. The therapeutic promise of the cancer stem cell concept. J. Clin. Invest. 120, 41–50 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Korkaya, H. et al. Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol. Cell 47, 570–584 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hinohara, K. & Gotoh, N. Inflammatory signaling pathways in self-renewing breast cancer stem cells. Curr. Opin. Pharmacol. 10, 650–654 (2010).

    CAS  PubMed  Google Scholar 

  44. Asiedu, M. K., Ingle, J. N., Behrens, M. D., Radisky, D. C. & Knutson, K. L. TGFβ/TNFα-mediated epithelial-mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype. Cancer Res. 71, 4707–4719 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Scheel, C. et al. Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell 145, 926–940 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zheng, Q. et al. Leptin deficiency suppresses MMTV–Wnt-1 mammary tumor growth in obese mice and abrogates tumor initiating cell survival. Endocr. Relat. Cancer 18, 491–503 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Feldman, D. E., Chen, C., Punj, V., Tsukamoto, H. & Machida, K. Pluripotency factor-mediated expression of the leptin receptor (OB-R) links obesity to oncogenesis through tumor-initiating stem cells. Proc. Natl Acad. Sci. USA 109, 829–834 (2012).

    CAS  PubMed  Google Scholar 

  48. Park, J., Morley, T. S. & Scherer, P. E. Inhibition of endotrophin, a cleavage product of collagen VI, confers cisplatin sensitivity to tumours. EMBO Mol. Med. 5, 935–948 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Park, H. S., Park, J. Y. & Yu, R. Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-α and IL-6. Diabetes Res. Clin. Pract. 69, 29–35 (2005).

    CAS  PubMed  Google Scholar 

  50. He, G. et al. Identification of liver cancer progenitors whose malignant progression depends on autocrine IL-6 signaling. Cell 155, 384–396 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Flores, M. B. et al. Obesity-induced increase in tumor necrosis factor-α leads to development of colon cancer in mice. Gastroenterology 143, 741–753. e1–e4 (2012).

    CAS  PubMed  Google Scholar 

  52. Hill-Baskin, A. E. et al. Diet-induced hepatocellular carcinoma in genetically predisposed mice. Hum. Mol. Genet. 18, 2975–2988 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Shimizu, M. et al. Acyclic retinoid inhibits diethylnitrosamine-induced liver tumorigenesis in obese and diabetic C57BLKS/J-+(db)/+Lepr(db) mice. Cancer Prev. Res. (Phila.) 4, 128–36 (2011).

    CAS  Google Scholar 

  54. Yehuda-Shnaidman, E. & Schwartz, B. Mechanisms linking obesity, inflammation and altered metabolism to colon carcinogenesis. Obes. Rev. 13, 1083–1095 (2012).

    CAS  PubMed  Google Scholar 

  55. Jain, S. S. & Bird, R. P. Elevated expression of tumor necrosis factor-α signaling molecules in colonic tumors of Zucker obese (fa/fa) rats. Int. J. Cancer 127, 2042–2050 (2010).

    CAS  PubMed  Google Scholar 

  56. Teraoka, N. et al. High susceptibility to azoxymethane-induced colorectal carcinogenesis in obese KK-Ay mice. Int. J. Cancer 129, 528–535 (2011).

    CAS  PubMed  Google Scholar 

  57. Mentor-Marcel, R. A. et al. Inflammation-associated serum and colon markers as indicators of dietary attenuation of colon carcinogenesis in ob/ob mice. Cancer Prev. Res. (Phila.) 2, 60–69 (2009).

    CAS  Google Scholar 

  58. Yasuda, Y. et al. Pitavastatin inhibits azoxymethane-induced colonic preneoplastic lesions in C57BL/KsJ-db/db obese mice. Cancer Sci. 101, 1701–7 (2010).

    CAS  PubMed  Google Scholar 

  59. Kubota, M. et al. Renin–angiotensin system inhibitors suppress azoxymethane-induced colonic preneoplastic lesions in C57BL/KsJ-db/db obese mice. Biochem. Biophys. Res. Commun. 410, 108–113 (2011).

    CAS  PubMed  Google Scholar 

  60. Grivennikov, S. et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15, 103–113 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu, Z. et al. Diet-induced obesity elevates colonic TNF-α in mice and is accompanied by an activation of Wnt signaling: a mechanism for obesity-associated colorectal cancer. J. Nutr. Biochem. 23, 1207–1213 (2012).

    CAS  PubMed  Google Scholar 

  62. Chia, V. M. et al. Leptin concentrations, leptin receptor polymorphisms, and colorectal adenoma risk. Cancer Epidemiol. Biomarkers Prev. 16, 2697–2703 (2007).

    CAS  PubMed  Google Scholar 

  63. Aleksandrova, K. et al. Leptin and soluble leptin receptor in risk of colorectal cancer in the European Prospective Investigation into Cancer and Nutrition cohort. Cancer Res. 72, 5328–5337 (2012).

    CAS  PubMed  Google Scholar 

  64. Wang, D. et al. Leptin regulates proliferation and apoptosis of colorectal carcinoma through PI3K/Akt/mTOR signalling pathway. J. Biosci. 37, 91–101 (2012).

    PubMed  Google Scholar 

  65. Ogunwobi, O. O. & Beales, I. L. The anti-apoptotic and growth stimulatory actions of leptin in human colon cancer cells involves activation of JNK mitogen activated protein kinase, JAK2 and PI3 kinase/Akt. Int. J. Colorectal Dis. 22, 401–409 (2007).

    PubMed  Google Scholar 

  66. Endo, H. et al. Leptin acts as a growth factor for colorectal tumours at stages subsequent to tumour initiation in murine colon carcinogenesis. Gut 60, 1363–1371 (2011).

    CAS  PubMed  Google Scholar 

  67. Uddin, S. et al. Overexpression of leptin receptor predicts an unfavorable outcome in Middle Eastern ovarian cancer. Mol. Cancer 8, 74 (2009).

    PubMed  PubMed Central  Google Scholar 

  68. Chen, C., Chang, Y. C., Lan, M. S. & Breslin, M. Leptin stimulates ovarian cancer cell growth and inhibits apoptosis by increasing cyclin D1 and Mcl-1 expression via the activation of the MEK/ERK1/2 and PI3K/Akt signaling pathways. Int. J. Oncol. 42, 1113–1119 (2013).

    CAS  PubMed  Google Scholar 

  69. Ptak, A., Kolaczkowska, E. & Gregoraszczuk, E. L. Leptin stimulation of cell cycle and inhibition of apoptosis gene and protein expression in OVCAR-3 ovarian cancer cells. Endocrine 43, 394–403 (2013).

    CAS  PubMed  Google Scholar 

  70. Ptak, A. & Gregoraszczuk, E. L. Bisphenol A induces leptin receptor expression, creating more binding sites for leptin, and activates the JAK/Stat., MAPK/ERK and PI3K/Akt signalling pathways in human ovarian cancer cell. Toxicol. Lett. 210, 332–337 (2012).

    CAS  PubMed  Google Scholar 

  71. Ptak, A., Rak-Mardyla, A. & Gregoraszczuk, E. L. Cooperation of bisphenol A and leptin in inhibition of caspase-3 expression and activity in OVCAR-3 ovarian cancer cells. Toxicol. In Vitro 27, 1937–1943 (2013).

    CAS  PubMed  Google Scholar 

  72. Niu, J. et al. The association between leptin level and breast cancer: a meta-analysis. PLoS ONE 8, e67349 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Miyoshi, Y. et al. High expression of leptin receptor mRNA in breast cancer tissue predicts poor prognosis for patients with high, but not low, serum leptin levels. Int. J. Cancer 118, 1414–1419 (2006).

    CAS  PubMed  Google Scholar 

  74. Cirillo, D., Rachiglio, A. M., la Montagna, R., Giordano, A. & Normanno, N. Leptin signaling in breast cancer: an overview. J. Cell Biochem. 105, 956–964 (2008).

    CAS  PubMed  Google Scholar 

  75. Andó, S. & Catalano, S. The multifactorial role of leptin in driving the breast cancer microenvironment. Nat. Rev. Endocrinol. 8, 263–275 (2012).

    Google Scholar 

  76. Park, J., Kusminski, C. M., Chua, S. C. & Scherer, P. E. Leptin receptor signaling supports cancer cell metabolism through suppression of mitochondrial respiration in vivo. Am. J. Pathol. 177, 3133–3144 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Holland, W. L. et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat. Med. 17, 55–63 (2011).

    CAS  PubMed  Google Scholar 

  78. Kamada, Y. et al. Hypoadiponectinemia accelerates hepatic tumor formation in a nonalcoholic steatohepatitis mouse model. J. Hepatol. 47, 556–564 (2007).

    CAS  PubMed  Google Scholar 

  79. Saxena, N. K. et al. Adiponectin modulates C-jun N-terminal kinase and mammalian target of rapamycin and inhibits hepatocellular carcinoma. Gastroenterology 139, 1762–1773 (2010).

    CAS  PubMed  Google Scholar 

  80. Man, K. et al. Suppression of liver tumor growth and metastasis by adiponectin in nude mice through inhibition of tumor angiogenesis and downregulation of Rho kinase/IFN-inducible protein 10/matrix metalloproteinase 9 signaling. Clin. Cancer Res. 16, 967–977 (2010).

    CAS  PubMed  Google Scholar 

  81. Sharma, D. et al. Adiponectin antagonizes the oncogenic actions of leptin in hepatocellular carcinogenesis. Hepatology 52, 1713–1722 (2010).

    CAS  PubMed  Google Scholar 

  82. Wei, E. K., Giovannucci, E., Fuchs, C. S., Willett, W. C. & Mantzoros, C. S. Low plasma adiponectin levels and risk of colorectal cancer in men: a prospective study. J. Natl Cancer Inst. 97, 1688–1694 (2005).

    CAS  PubMed  Google Scholar 

  83. Yoneda, K. et al. Expression of adiponectin receptors, AdipoR1 and AdipoR2, in normal colon epithelium and colon cancer tissue. Oncol. Rep. 20, 479–483 (2008).

    CAS  PubMed  Google Scholar 

  84. Kim, A. Y. et al. Adiponectin represses colon cancer cell proliferation via AdipoR1- and -R2-mediated AMPK activation. Mol. Endocrinol. 24, 1441–1452 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Sugiyama, M. et al. Adiponectin inhibits colorectal cancer cell growth through the AMPK/mTOR pathway. Int. J. Oncol. 34, 339–344 (2009).

    CAS  PubMed  Google Scholar 

  86. Mutoh, M. et al. Loss of adiponectin promotes intestinal carcinogenesis in Min and wild-type mice. Gastroenterology 140, 2000–2008 (2011).

    CAS  PubMed  Google Scholar 

  87. Fujisawa, T. et al. Adiponectin suppresses colorectal carcinogenesis under the high-fat diet condition. Gut 57, 1531–1538 (2008).

    CAS  PubMed  Google Scholar 

  88. Tworoger, S. S. et al. Plasma adiponectin concentrations and risk of incident breast cancer. J. Clin. Endocrinol. Metab. 92, 1510–1516 (2007).

    CAS  PubMed  Google Scholar 

  89. Denzel, M. S. et al. Adiponectin deficiency limits tumor vascularization in the MMTV-PyV-mT mouse model of mammary cancer. Clin. Cancer Res. 15, 3256–3264 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Landskroner-Eiger, S. et al. Proangiogenic contribution of adiponectin toward mammary tumor growth in vivo. Clin. Cancer Res. 15, 3265–3276 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Koppenol, W. H., Bounds, P. L. & Dang, C. V. Otto Warburg's contributions to current concepts of cancer metabolism. Nat. Rev. Cancer 11, 325–337 (2011).

    CAS  PubMed  Google Scholar 

  92. Pavlides, S. et al. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8, 3984–4001 (2009).

    CAS  PubMed  Google Scholar 

  93. Migneco, G. et al. Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: evidence for stromal–epithelial metabolic coupling. Cell Cycle 9, 2412–2422 (2010).

    CAS  PubMed  Google Scholar 

  94. Gallagher, E. J. & LeRoith, D. Diabetes, antihyperglycemic medications and cancer risk: smoke or fire? Curr. Opin. Endocrinol. Diabetes Obes. 20, 485–494 (2013).

    CAS  PubMed  Google Scholar 

  95. Brand-Miller, J. C. Glycemic load and chronic disease. Nutr. Rev. 61, S49–S55 (2003).

    PubMed  Google Scholar 

  96. Vigneri, P., Frasca, F., Sciacca, L., Pandini, G. & Vigneri, R. Diabetes and cancer. Endocr. Relat. Cancer 16, 1103–1123 (2009).

    CAS  PubMed  Google Scholar 

  97. Ferguson, R. D., Gallagher, E. J., Scheinman, E. J., Damouni, R. & LeRoith, D. The epidemiology and molecular mechanisms linking obesity, diabetes, and cancer. Vitam. Horm. 93, 51–98 (2013).

    CAS  PubMed  Google Scholar 

  98. Warburg, O. The reaction of ascites tumor cells to oxygen under high pressure. Arch. Geschwulstforsch. 6, 7–11 (1953).

    CAS  PubMed  Google Scholar 

  99. Shapot, V. S. & Blinov, V. A. Blood glucose levels and gluconeogenesis in animals bearing transplantable tumors. Cancer Res. 34, 1827–1832 (1974).

    CAS  PubMed  Google Scholar 

  100. Pavelic, K. et al. Growth and treatment of Ehrlich tumor in mice with alloxan-induced diabetes. Cancer Res. 39, 1807–1813 (1979).

    CAS  PubMed  Google Scholar 

  101. Gullino, P. M., Grantham, F. H. & Courtney, A. H. Glucose consumption by transplanted tumors in vivo. Cancer Res. 27, 1031–1040 (1967).

    CAS  PubMed  Google Scholar 

  102. Goranson, E. S. & Tilser, G. J. Studies on the relationship of alloxan-diabetes and tumor growth. Cancer Res. 15, 626–631 (1955).

    CAS  PubMed  Google Scholar 

  103. Park, J., Sarode, V. R., Euhus, D., Kittler, R. & Scherer, P. E. Neuregulin 1–HER axis as a key mediator of hyperglycemic memory effects in breast cancer. Proc. Natl Acad. Sci. USA 109, 21058–21063 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang, Z. V. et al. PANIC-ATTAC: a mouse model for inducible and reversible β-cell ablation. Diabetes 57, 2137–2148 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Pollak, M. Insulin and insulin-like growth factor signalling in neoplasia. Nat. Rev. Cancer 8, 915–928 (2008).

    CAS  PubMed  Google Scholar 

  106. Clayton, P. E., Banerjee, I., Murray, P. G. & Renehan, A. G. Growth hormone, the insulin-like growth factor axis, insulin and cancer risk. Nat. Rev. Endocrinol. 7, 11–24 (2011).

    CAS  PubMed  Google Scholar 

  107. Renehan, A. G., Frystyk, J. & Flyvbjerg, A. Obesity and cancer risk: the role of the insulin–IGF axis. Trends Endocrinol. Metab. 17, 328–336 (2006).

    CAS  PubMed  Google Scholar 

  108. Renehan, A. G. et al. Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet 363, 1346–1353 (2004).

    CAS  PubMed  Google Scholar 

  109. Parekh, N. et al. Lifestyle, anthropometric, and obesity-related physiologic determinants of insulin-like growth factor-1 in the Third National Health and Nutrition Examination Survey (1988–1994). Ann. Epidemiol. 20, 182–193 (2010).

    PubMed  Google Scholar 

  110. Crowe, F. L. et al. A cross-sectional analysis of the associations between adult height, BMI and serum concentrations of IGF-I and IGFBP-1 -2 and -3 in the European Prospective Investigation into Cancer and Nutrition (EPIC). Ann. Hum. Biol. 38, 194–202 (2011).

    PubMed  Google Scholar 

  111. Fogarty, A. W. et al. A prospective study of weight change and systemic inflammation over 9 y. Am. J. Clin. Nutr. 87, 30–35 (2008).

    CAS  PubMed  Google Scholar 

  112. Huang, X. F. & Chen, J. Z. Obesity, the PI3K/Akt signal pathway and colon cancer. Obes. Rev. 10, 610–616 (2009).

    CAS  PubMed  Google Scholar 

  113. O'Brien, K. D. et al. Diet-induced weight loss is associated with decreases in plasma serum amyloid A and C-reactive protein independent of dietary macronutrient composition in obese subjects. J. Clin. Endocrinol. Metab. 90, 2244–2249 (2005).

    CAS  PubMed  Google Scholar 

  114. Tran, C. D., Diorio, C., Berube, S., Pollak, M. & Brisson, J. Relation of insulin-like growth factor (IGF) I and IGF-binding protein 3 concentrations with intakes of fruit, vegetables, and antioxidants. Am. J. Clin. Nutr. 84, 1518–1526 (2006).

    CAS  PubMed  Google Scholar 

  115. Heald, A. H. et al. Close relation of fasting insulin-like growth factor binding protein-1 (IGFBP-1) with glucose tolerance and cardiovascular risk in two populations. Diabetologia 44, 333–339 (2001).

    CAS  PubMed  Google Scholar 

  116. Bol, D. K., Kiguchi, K., Gimenez-Conti, I., Rupp, T. & DiGiovanni, J. Overexpression of insulin-like growth factor-1 induces hyperplasia, dermal abnormalities, and spontaneous tumor formation in transgenic mice. Oncogene 14, 1725–1734 (1997).

    CAS  PubMed  Google Scholar 

  117. DiGiovanni, J. et al. Deregulated expression of insulin-like growth factor 1 in prostate epithelium leads to neoplasia in transgenic mice. Proc. Natl Acad. Sci. USA 97, 3455–3460 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Carboni, J. M. et al. Tumor development by transgenic expression of a constitutively active insulin-like growth factor I receptor. Cancer Res. 65, 3781–3787 (2005).

    CAS  PubMed  Google Scholar 

  119. Moorehead, R. A., Sanchez, O. H., Baldwin, R. M. & Khokha, R. Transgenic overexpression of IGF-II induces spontaneous lung tumors: a model for human lung adenocarcinoma. Oncogene 22, 853–857 (2003).

    CAS  PubMed  Google Scholar 

  120. Pravtcheva, D. D. & Wise, T. L. Metastasizing mammary carcinomas in H19 enhancers Igf2 transgenic mice. J. Exp. Zool. 281, 43–57 (1998).

    CAS  PubMed  Google Scholar 

  121. Santen, R. J., Brodie, H., Simpson, E. R., Siiteri, P. K. & Brodie, A. History of aromatase: saga of an important biological mediator and therapeutic target. Endocr. Rev. 30, 343–375 (2009).

    CAS  PubMed  Google Scholar 

  122. Simpson, E. R. et al. Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocr. Rev. 15, 342–355 (1994).

    CAS  PubMed  Google Scholar 

  123. Chen, J. Multiple signal pathways in obesity-associated cancer. Obes. Rev. 12, 1063–1070 (2011).

    PubMed  Google Scholar 

  124. Bulun, S. E., Chen, D., Moy, I., Brooks, D. C. & Zhao, H. Aromatase, breast cancer and obesity: a complex interaction. Trends Endocrinol. Metab. 23, 83–89 (2012).

    CAS  PubMed  Google Scholar 

  125. Key, T. et al. Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. J. Natl Cancer Inst. 94, 606–616 (2002).

    CAS  PubMed  Google Scholar 

  126. Bulun, S. E., Price, T. M., Aitken, J., Mahendroo, M. S. & Simpson, E. R. A link between breast cancer and local estrogen biosynthesis suggested by quantification of breast adipose tissue aromatase cytochrome P450 transcripts using competitive polymerase chain reaction after reverse transcription. J. Clin. Endocrinol. Metab. 77, 1622–1628 (1993).

    CAS  PubMed  Google Scholar 

  127. Oneill, J. S., Elton, R. A. & Miller, W. R. Aromatase activity in adipose tissue from breast quadrants: a link with tumour site. Br. Med. J. 296, 741–743 (1988).

    CAS  Google Scholar 

  128. Chen, D. et al. Prostaglandin E(2) induces breast cancer related aromatase promoters via activation of p38 and c-Jun NH(2)-terminal kinase in adipose fibroblasts. Cancer Res. 67, 8914–8922 (2007).

    CAS  PubMed  Google Scholar 

  129. Zhao, Y., Nichols, J. E., Valdez, R., Mendelson, C. R. & Simpson, E. R. Tumor necrosis factor-α stimulates aromatase gene expression in human adipose stromal cells through use of an activating protein-1 binding site upstream of promoter 1.4. Mol. Endocrinol. 10, 1350–1357 (1996).

    CAS  PubMed  Google Scholar 

  130. Ellis, M. J. et al. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 486, 353–360 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Jansen, M. P. et al. Hallmarks of aromatase inhibitor drug resistance revealed by epigenetic profiling in breast cancer. Cancer Res. 73, 6632–6641 (2013).

    CAS  PubMed  Google Scholar 

  132. Evans, J. M., Donnelly, L. A., Emslie-Smith, A. M., Alessi, D. R. & Morris, A. D. Metformin and reduced risk of cancer in diabetic patients. BMJ 330, 1304–1305 (2005).

    PubMed  PubMed Central  Google Scholar 

  133. Li, D., Yeung, S. C., Hassan, M. M., Konopleva, M. & Abbruzzese, J. L. Antidiabetic therapies affect risk of pancreatic cancer. Gastroenterology 137, 482–488 (2009).

    PubMed  Google Scholar 

  134. Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167–1174 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Zakikhani, M., Dowling, R., Fantus, I. G., Sonenberg, N. & Pollak, M. Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res. 66, 10269–10273 (2006).

    CAS  PubMed  Google Scholar 

  136. Dowling, R. J., Zakikhani, M., Fantus, I. G., Pollak, M. & Sonenberg, N. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res. 67, 10804–10812 (2007).

    CAS  PubMed  Google Scholar 

  137. Hirsch, H. A., Iliopoulos, D., Tsichlis, P. N. & Struhl, K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res. 69, 7507–7511 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Satoh, T. et al. Activation of peroxisome proliferator-activated receptor-γ stimulates the growth arrest and DNA-damage inducible 153 gene in non-small cell lung carcinoma cells. Oncogene 21, 2171–2180 (2002).

    CAS  PubMed  Google Scholar 

  139. Girnun, G. D. et al. Regression of drug-resistant lung cancer by the combination of rosiglitazone and carboplatin. Clin. Cancer Res. 14, 6478–6486 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Girnun, G. D. et al. Synergy between PPARγ ligands and platinum-based drugs in cancer. Cancer Cell 11, 395–406 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. McNeely, M. L. et al. Effects of exercise on breast cancer patients and survivors: a systematic review and meta-analysis. CMAJ 175, 34–41 (2006).

    PubMed  PubMed Central  Google Scholar 

  142. Holmes, M. D., Chen, W. Y., Feskanich, D., Kroenke, C. H. & Colditz, G. A. Physical activity and survival after breast cancer diagnosis. JAMA 293, 2479–2486 (2005).

    CAS  PubMed  Google Scholar 

  143. Thompson, H. J. Effect of exercise intensity and duration on the induction of mammary carcinogenesis. Cancer Res. 54, 1960s–1963s (1994).

    CAS  PubMed  Google Scholar 

  144. Thompson, H. J., Westerlind, K. C., Snedden, J., Briggs, S. & Singh, M. Exercise intensity dependent inhibition of 1-methyl-1-nitrosourea induced mammary carcinogenesis in female F-344 rats. Carcinogenesis 16, 1783–1786 (1995).

    CAS  PubMed  Google Scholar 

  145. Thompson, H. J., Ronan, A. M., Ritacco, K. A., Tagliaferro, A. R. & Meeker, L. D. Effect of exercise on the induction of mammary carcinogenesis. Cancer Res. 48, 2720–2723 (1988).

    CAS  PubMed  Google Scholar 

  146. Chlebowski, R. T. et al. Dietary fat reduction and breast cancer outcome: interim efficacy results from the Women's Intervention Nutrition Study. J. Natl Cancer Inst. 98, 1767–1776 (2006).

    PubMed  Google Scholar 

  147. Visser, M., Bouter, L. M., McQuillan, G. M., Wener, M. H. & Harris, T. B. Elevated C-reactive protein levels in overweight and obese adults. JAMA 282, 2131–2135 (1999).

    CAS  PubMed  Google Scholar 

  148. Tchernof, A., Nolan, A., Sites, C. K., Ades, P. A. & Poehlman, E. T. Weight loss reduces C-reactive protein levels in obese postmenopausal women. Circulation 105, 564–569 (2002).

    PubMed  Google Scholar 

  149. Imayama, I. et al. Effects of a caloric restriction weight loss diet and exercise on inflammatory biomarkers in overweight/obese postmenopausal women: a randomized controlled trial. Cancer Res. 72, 2314–2326 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Silha, J. V., Krsek, M., Sucharda, P. & Murphy, L. J. Angiogenic factors are elevated in overweight and obese individuals. Int. J. Obes. (Lond.) 29, 1308–1314 (2005).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors' research was supported by NIH Grants R01-DK55758, R01-DK099110 (to P.E.S.) and P01-DK088761 (to P.E.S. and D.J.C.). J.P.'s research was supported by a fellowship from the US Department of Defence (USAMRMC BC085909) and 2014 research fund (1.130088.01) of Ulsan National Institute of Science and Technology. T.S.M.'s work was supported by NIH Training Grant T32-GM083831.

Author information

Authors and Affiliations

Authors

Contributions

J.P. and T.S.M. contributed equally to this article. J.P., T.S.M., D.J.C. and P.E.S undertook discussions of the article content, writing, and review or editing of the manuscript before submission. In addition, M.K. contributed to discussions of the content and writing the manuscript.

Corresponding author

Correspondence to Philipp E. Scherer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Morley, T., Kim, M. et al. Obesity and cancer—mechanisms underlying tumour progression and recurrence. Nat Rev Endocrinol 10, 455–465 (2014). https://doi.org/10.1038/nrendo.2014.94

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2014.94

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer