Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

HDL—is it too big to fail?

Abstract

The HDL hypothesis has suffered damage in the past few years. Clinical trials have shown that raising HDL cholesterol levels does not improve cardiovascular disease (CVD) outcomes. In addition, Mendelian randomization studies have shown that DNA variants that alter HDL cholesterol levels in populations are unrelated to incident CVD events. Balancing this deluge of negative data are substantial basic science data supporting the concept that raising HDL cholesterol levels reduces CVD risk. Also, functionally relevant HDL subfractions might be more important determinants of risk than overall HDL cholesterol levels. But, while wobbly, the HDL hypothesis is still standing, seemingly too big to fail owing to past intellectual, economic and psychological investments in the idea.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Current concepts of HDL metabolism, illustrating reverse cholesterol transport, and HDL heterogeneity, pleiotropic effects and clearance.

Similar content being viewed by others

References

  1. Friedewald, V. E. Jr, Ballantyne, C. M., Davidson, M. H., Guyton, J. R. & Roberts, W. C. The editor's roundtable: lipid management beyond statins—reducing residual cardiovascular risk. Am. J. Cardiol 102, 559–567 (2008).

    Article  Google Scholar 

  2. Brewer, H. B. Jr. Clinical review: The evolving role of HDL in the treatment of high-risk patients with cardiovascular disease. J. Clin. Endocrinol. Metab. 96, 1246–1257 (2011).

    Article  CAS  Google Scholar 

  3. Barter, P. HDL-C: role as a risk modifier. Atheroscler. Suppl. 12, 267–270 (2011).

    Article  CAS  Google Scholar 

  4. Emerging Risk Factors Collaboration et al. Lipid-related markers and cardiovascular disease prediction. JAMA 307, 2499–2506 (2012).

  5. Barter, P. et al. HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events. N. Engl. J. Med. 357, 1301–1310 (2007).

    Article  CAS  Google Scholar 

  6. Rosenson, R. S. et al. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation 125, 1905–1919 (2012).

    Article  Google Scholar 

  7. Alwaili, K., Awan, Z., Alshahrani, A. & Genest, J. High-density lipoproteins and cardiovascular disease: 2010 update. Expert Rev. Cardiovasc. Ther. 8, 413–423 (2010).

    Article  CAS  Google Scholar 

  8. Vucic, E. & Rosenson, R. S. Recombinant high-density lipoprotein formulations. Curr. Atheroscler Rep. 13, 81–87 (2011).

    Article  CAS  Google Scholar 

  9. Tabet, F. & Rye, K. A. High-density lipoproteins, inflammation and oxidative stress. Clin. Sci. (Lond.) 116, 87–98 (2009).

    Article  CAS  Google Scholar 

  10. Joy, T. & Hegele, R. A. Is raising HDL a futile strategy for atheroprotection? Nat. Rev. Drug Discov. 7, 143–155 (2008).

    Article  CAS  Google Scholar 

  11. Duffy, D. & Rader, D. J. Update on strategies to increase HDL quantity and function. Nat. Rev. Cardiol. 6, 455–463 (2009).

    Article  Google Scholar 

  12. Asztalos, B. F., Tani, M. & Schaefer, E. J. Metabolic and functional relevance of HDL subspecies. Curr. Opin. Lipidol. 22, 176–185 (2011).

    Article  CAS  Google Scholar 

  13. Vaisar, T. et al. Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J. Clin. Invest. 117, 746–756 (2007).

    Article  CAS  Google Scholar 

  14. Mackness, B. & Mackness, M. Anti-inflammatory properties of paraoxonase-1 in atherosclerosis. Adv. Exp. Med. Biol. 660, 143–151 (2010).

    Article  CAS  Google Scholar 

  15. Soran, H., Hama, S., Yadav, R. & Durrington, P. N. HDL functionality. Curr. Opin. Lipidol. 23, 353–366 (2012).

    Article  CAS  Google Scholar 

  16. Khera, A. V. et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N. Engl. J. Med. 364, 127–135 (2011).

    Article  CAS  Google Scholar 

  17. de la Llera-Moya, M. et al. The ability to promote efflux via ABCA1 determines the capacity of serum specimens with similar high-density lipoprotein cholesterol to remove cholesterol from macrophages. Arterioscler. Thromb. Vasc. Biol. 30, 796–801 (2010).

    Article  CAS  Google Scholar 

  18. Degoma, E. M. & Rader, D. J. Novel HDL-directed pharmacotherapeutic strategies. Nat. Rev. Cardiol. 8, 266–277 (2011).

    Article  CAS  Google Scholar 

  19. Tardif, J. C., Heinonen, T. & Noble, S. High-density lipoprotein/apolipoprotein A-I infusion therapy. Curr. Atheroscler. Rep. 11, 58–63 (2009).

    Article  CAS  Google Scholar 

  20. Calabresi, L., Simonelli, S., Gomaraschi, M. & Franceschini, G. Genetic lecithin: cholesterol acyltransferase deficiency and cardiovascular disease. Atherosclerosis 222, 299–306 (2012).

    Article  CAS  Google Scholar 

  21. Iatan, I., Palmyre, A., Alrasheed, S., Ruel, I. & Genest, J. Genetics of cholesterol efflux. Curr. Atheroscler. Rep. 14, 235–246 (2012).

    Article  CAS  Google Scholar 

  22. Ng, D. S. et al. Apolipoprotein A-I deficiency. Biochemical and metabolic characteristics. Arterioscler. Thromb. Vasc Biol. 15, 2157–2164 (1995).

    Article  CAS  Google Scholar 

  23. Tietjen, I. et al. Increased risk of coronary artery disease in Caucasians with extremely low HDL cholesterol due to mutations in ABCA1, APOA1, and LCAT. Biochim. Biophys. Acta 1821, 416–424 (2012).

    Article  CAS  Google Scholar 

  24. Oliveira, H. C. & de Faria, E. C. Cholesteryl ester transfer protein: the controversial relation to atherosclerosis and emerging new biological roles. IUBMB Life 63, 248–257 (2011).

    Article  CAS  Google Scholar 

  25. Vergeer, M. et al. Genetic variant of the scavenger receptor BI in humans. N. Engl. J. Med. 364, 136–145 (2011).

    Article  CAS  Google Scholar 

  26. Hegele, R. A. et al. Hepatic lipase deficiency. Clinical, biochemical, and molecular genetic characteristics. Arterioscler. Thromb. 13, 720–728 (1993).

    Article  CAS  Google Scholar 

  27. Frikke-Schmidt, R. et al. Association of loss-of-function mutations in the ABCA1 gene with high-density lipoprotein cholesterol levels and risk of ischemic heart disease. JAMA 299, 2524–2532 (2008).

    Article  CAS  Google Scholar 

  28. Johannsen, T. H. et al. Hepatic lipase, genetically elevated high-density lipoprotein, and risk of ischemic cardiovascular disease. J. Clin. Endocrinol. Metab. 94, 1264–1273 (2009).

    Article  CAS  Google Scholar 

  29. Haase, C. L. et al. LCAT, HDL cholesterol and ischemic cardiovascular disease: a Mendelian randomization study of HDL cholesterol in 54,500 individuals. J. Clin. Endocrinol. Metab. 97, E248–E256 (2012).

    Article  CAS  Google Scholar 

  30. Voight, B. F. et al. Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomisation study. Lancet 380, 572–580 (2012).

    Article  CAS  Google Scholar 

  31. Canner, P. L. et al. Fifteen year mortality in Coronary Drug Project patients: long-term benefit with niacin. J. Am. Coll. Cardiol. 8, 1245–1255 (1986).

    Article  CAS  Google Scholar 

  32. Frick, M. H. et al. Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N. Engl. J. Med. 317, 1237–1245 (1987).

    Article  CAS  Google Scholar 

  33. Rubins, H. B. et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N. Engl. J. Med. 341, 410–418 (1999).

    Article  CAS  Google Scholar 

  34. ACCORD Study Group et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N. Engl. J. Med. 362, 1563–1574 (2010).

  35. AIM-HIGH Investigators et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N. Engl. J. Med. 365, 2255–2267 (2011).

  36. Goldenberg, I. et al. Long-term benefit of high-density lipoprotein cholesterol-raising therapy with bezafibrate: 16-year mortality follow-up of the bezafibrate infarction prevention trial. Arch. Intern. Med. 169, 508–514 (2009).

    Article  CAS  Google Scholar 

  37. Jun, M. et al. Effects of fibrates on cardiovascular outcomes: a systematic review and meta-analysis. Lancet 375, 1875–1884 (2010).

    Article  CAS  Google Scholar 

  38. Merck. Merck announces HPS2-THRIVE study of Tredaptive (Extended-Release Niacin/Laropiprant) did not achieve primary endpoint [online] (2012).

  39. Tall, A. R., Yvan-Charvet, L., Terasaka, N., Pagler, T. & Wang, N. HDL, ABC transporters, and cholesterol efflux: implications for the treatment of atherosclerosis. Cell Metab. 7, 365–375 (2008).

    Article  CAS  Google Scholar 

  40. Hewing, B. & Fisher, E. A. Rationale for cholesteryl ester transfer protein inhibition. Curr. Opin. Lipidol. 23, 372–376 (2012).

    Article  CAS  Google Scholar 

  41. Barter, P. J. et al. Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med. 357, 2109–2122 (2007).

    Article  CAS  Google Scholar 

  42. Hu, X. et al. Torcetrapib induces aldosterone and cortisol production by an intracellular calcium-mediated mechanism independently of cholesteryl ester transfer protein inhibition. Endocrinology 150, 2211–2219 (2009).

    Article  CAS  Google Scholar 

  43. Nissen, S. E. et al. Effect of torcetrapib on the progression of coronary atherosclerosis. N. Engl. J. Med. 356, 1304–1316 (2007).

    Article  CAS  Google Scholar 

  44. Vergeer, M. et al. Cholesteryl ester transfer protein inhibitor torcetrapib and off-target toxicity: a pooled analysis of the rating atherosclerotic disease change by imaging with a new CETP inhibitor (RADIANCE) trials. Circulation 118, 2515–2522 (2008).

    Article  CAS  Google Scholar 

  45. Nicholls, S. J., Tuzcu, E. M., Brennan, D. M., Tardif, J. C. & Nissen, S. E. Cholesteryl ester transfer protein inhibition, high-density lipoprotein raising, and progression of coronary atherosclerosis: insights from ILLUSTRATE (Investigation of Lipid Level Management Using Coronary Ultrasound to Assess Reduction of Atherosclerosis by CETP Inhibition and HDL Elevation). Circulation 118, 2506–2514 (2008).

    Article  CAS  Google Scholar 

  46. Barter, P. J. & Rye, K. A. Cholesteryl ester transfer protein inhibition as a strategy to reduce cardiovascular risk. J. Lipid Res. 53, 1755–1766 (2012).

    Article  CAS  Google Scholar 

  47. Schwartz, G. G. et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N. Engl. J. Med. 367, 2089–2099 (2012).

    Article  CAS  Google Scholar 

  48. Hooper, A. J. & Burnett, J. R. Dalcetrapib, a cholesteryl ester transfer protein modulator. Expert Opin. Investig. Drugs 21, 1427–1432 (2012).

    Article  CAS  Google Scholar 

  49. Niesor, E. J. Different effects of compounds decreasing cholesteryl ester transfer protein activity on lipoprotein metabolism. Curr. Opin. Lipidol. 22, 288–295 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D. S. Ng is supported by an operating grant from the Canadian Institutes for Health Research (CIHR; MOP-275369) and a CIHR China–Canada Joint Health Research Initiative grant. R. A. Hegele is supported by the Jacob J. Wolfe Distinguished Medical Research Chair, the Edith Schulich Vinet Canada Research Chair in Human Genetics, the Martha G. Blackburn Chair in Cardiovascular Research, and operating grants from the CIHR (MOP-13430, MOP-79523, CTP-79853), the Heart and Stroke Foundation of Ontario (NA-6059, T-6018) and Genome Canada through the Ontario Genomics Institute.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, provided a substantial contribution to discussion of content, wrote the article, and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Robert A. Hegele.

Ethics declarations

Competing interests

R. A. Hegele declares associations with the following companies: Abbott (honoraria for speaking), Amgen (honoraria for speaking; advisory board), AstraZeneca (honoraria for speaking), Merck (honoraria for speaking; advisory board), Pfizer (honoraria for speaking), Tribute Pharmaceuticals (honoraria for speaking; advisory board) and Valeant (honoraria for speaking; advisory board). N. C. W Wong declares an association with the following company: Resverlogix. The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, D., Wong, N. & Hegele, R. HDL—is it too big to fail?. Nat Rev Endocrinol 9, 308–312 (2013). https://doi.org/10.1038/nrendo.2012.238

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2012.238

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing