Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hyperactive Ras in developmental disorders and cancer

An Erratum to this article was published on 01 July 2007

Key Points

  • Ras proteins regulate signalling pathways that control many cellular responses such as proliferation, survival and differentiation.

  • Ras proteins are activated when guanosine triphosphate (GTP) is bound. SOS1, and other exchange factors stimulate guanine nucleotide dissociation from Ras, which results in increased levels of Ras–GTP.

  • Ras–GTP signalling is terminated by hydrolysis to Ras–guanosine diphosphate (Ras–GDP), a reaction catalysed by the GTPase-activating proteins (GAPs), including p120GAP and neurofibromin.

  • Ras–GTP binds to various effector proteins to stimulate signalling pathways; among these effector pathways is the Raf–mitogen-activated and extracellular-signal regulated kinase kinase (MEK)–extracellular signal-regulated kinase (ERK) cascade.

  • Activating somatic mutations in the Ras genes and mutations that activate regulators and effectors of Ras proteins are common in tumour development and cancer.

  • Germline mutations that affect components of the Ras–Raf–MEK–ERK pathway are now known to underlie a group of developmental disorders, such as Noonan syndrome, Costello syndrome and cardio-facio-cutaneous syndrome.

  • Germline mutations in human syndromes frequently encode novel mutant proteins. Studies performed to date suggest that strength and/or duration of signalling through the Ras–Raf–MEK–ERK pathway regulates developmental programmes. Further structural, biochemical and functional analyses of these mutant proteins will extend our understanding of Ras signalling in development and cancer.

Abstract

Ras genes are the most common targets for somatic gain-of-function mutations in human cancer. Recently, germline mutations that affect components of the Ras–Raf–mitogen-activated and extracellular-signal regulated kinase kinase (MEK)–extracellular signal-regulated kinase (ERK) pathway were shown to cause several developmental disorders, including Noonan, Costello and cardio-facio-cutaneous syndromes. Many of these mutant alleles encode proteins with aberrant biochemical and functional properties. Here we will discuss the implications of germline mutations in the Ras–Raf–MEK–ERK pathway for understanding normal developmental processes and cancer pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Ras signalling pathway.
Figure 2: The four isoforms of Ras.
Figure 3: The structure of Ras.
Figure 4: Disease mutations in BRAF.

Similar content being viewed by others

References

  1. Bourne, H. R., Sanders, D. A. & McCormick, F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348, 125–132 (1990).

    Article  CAS  PubMed  Google Scholar 

  2. Bourne, H. R., Sanders, D. A. & McCormick, F. The GTPase superfamily: conserved structure and molecular mechanism. Nature 349, 117–127 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Vetter, I. R. & Wittinghofer, A. The guanine nucleotide-binding switch in three dimensions. Science 294, 1299–1304 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Cichowski, K. & Jacks, T. NF1 tumor suppressor gene function: narrowing the GAP. Cell 104, 593–604 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Tartaglia, M. & Gelb, B. D. Noonan syndrome and related disorders: genetics and pathogenesis. Annu. Rev. Genomics Hum. Genet. 6, 45–68 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Bentires-Alj, M., Kontaridis, M. I. & Neel, B. G. Stops along the RAS pathway in human genetic disease. Nature Med. 12, 283–285 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Aoki, Y. et al. Germline mutations in HRAS proto-oncogene cause Costello syndrome. Nature Genet. 37, 1038–1040 (2005). This study, demonstrating heterozygous mutations in HRAS in 12 out of 13 individuals with Costello syndrome, is the first report of a germline RAS mutation as the cause of a human disease.

    Article  CAS  PubMed  Google Scholar 

  8. Kontaridis, M. I., Swanson, K. D., David, F. S., Barford, D. & Neel, B. G. PTPN11 (SHP2) mutations in LEOPARD syndrome have dominant negative, not activating, effects. J. Biol. Chem. 281, 6785–6792 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Rodriguez-Viciana, P. et al. Germline mutations in genes within the MAPK pathway cause cardio-facio-cutaneous syndrome. Science 311, 1287–1290 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Niihori, T. et al. Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome. Nature Genet. 38, 294–296 (2006). References 9 and 10 report BRAF and MEK1 and 2 mutations in CFC syndrome and establish the Raf–MEK–ERK kinase cascade as a critical downstream effector pathway of Ras in development.

    Article  CAS  PubMed  Google Scholar 

  11. Schubbert, S. et al. Germline KRAS mutations cause Noonan syndrome. Nature Genet. 38, 331–336 (2006). This study identified novel germline KRAS mutations in Noonan and CFC syndromes and demonstrates that the encoded mutant proteins are functionally and biochemically hyperactive relative to wild-type KRAS , but less potent than oncogenic KRAS.

    Article  CAS  PubMed  Google Scholar 

  12. Roberts, A. E. et al. Germline gain-of-function mutations in SOS1 cause Noonan syndrome. Nature Genet. 39, 70–74 (2006).

    Article  PubMed  CAS  Google Scholar 

  13. Tartaglia, M. et al. Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nature Genet. 39, 75–79 (2006). References 12 and 13 report novel germline SOS1 mutations in 10% of Noonan syndrome patients, which establishes an important role of this GNEF in development, and provokes speculation of SOS1 as a proto-oncogene.

    Article  PubMed  CAS  Google Scholar 

  14. Tartaglia, M. et al. Diversity and functional consequences of germline and somatic PTPN11 mutations in human disease. Am. J. Hum. Genet. 78, 279–290 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Boguski, M. & McCormick, F. Proteins regulating Ras and its relatives. Nature 366, 643–653 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Donovan, S., Shannon, K. M. & Bollag, G. GTPase activating poteins: critical regulators of intracellular signaling. BBA Rev. Cancer 1602, 23–45 (2002).

    CAS  Google Scholar 

  17. Mitin, N., Rossman, K. L. & Der, C. J. Signaling interplay in Ras superfamily function. Curr. Biol. 15, R563–R574 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Repasky, G. A., Chenette, E. J. & Der, C. J. Renewing the conspiracy theory debate: does Raf function alone to mediate Ras oncogenesis? Trends Cell Biol. 14, 639–647 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Muroya, K., Hattori, S. & Nakamura, S. Nerve growth factor induces rapid accumulation of the GTP-bound form of p21ras in rat pheochromocytoma PC12 cells. Oncogene 7, 277–281 (1992).

    CAS  PubMed  Google Scholar 

  20. Heasley, L. E. & Johnson, G. L. The β-PDGF receptor induces neuronal differentiation of PC12 cells. Mol. Biol. Cell 3, 545–553 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Traverse, S., Gomez, N., Paterson, H., Marshall, C. & Cohen, P. Sustained activation of the mitogen-activated protein (MAP) kinase cascade may be required for differentiation of PC12 cells. Comparison of the effects of nerve growth factor and epidermal growth factor. Biochem. J. 288, 351–355 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nguyen, T. T. et al. Co-regulation of the mitogen-activated protein kinase, extracellular signal-regulated kinase 1, and the 90-kDa ribosomal S6 kinase in PC12 cells. Distinct effects of the neurotrophic factor, nerve growth factor, and the mitogenic factor, epidermal growth factor. J. Biol. Chem. 268, 9803–9810 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Marshall, C. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179–185 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Yordy, J. S. & Muise-Helmericks, R. C. Signal transduction and the Ets family of transcription factors. Oncogene 19, 6503–6513 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Pruitt, K. & Der, C. J. Ras and Rho regulation of the cell cycle and oncogenesis. Cancer Lett. 171, 1–10 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Rodriguez-Viciana, P. et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370, 527–532 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Pacold, M. E. et al. Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase γ. Cell 103, 931–943 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Bader, A. G., Kang, S., Zhao, L. & Vogt, P. K. Oncogenic PI3K deregulates transcription and translation. Nature Rev. Cancer 5, 921–929 (2005).

    Article  CAS  Google Scholar 

  29. Vivanco, I. & Sawyers, C. L. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nature Rev. Cancer 2, 489–501 (2002).

    Article  CAS  Google Scholar 

  30. Hennessy, B. T., Smith, D. L., Ram, P. T., Lu, Y. & Mills, G. B. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nature Rev. Drug Discov. 4, 988–1004 (2005).

    Article  CAS  Google Scholar 

  31. Malliri, A. et al. Mice deficient in the Rac activator Tiam1 are resistant to Ras-induced skin tumours. Nature 417, 867–871 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Wolthuis, R. M. & Bos, J. L. Ras caught in another affair: the exchange factors for Ral. Curr. Opin. Genet. Dev. 9, 112–117 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Gonzalez-Garcia, A. et al. RalGDS is required for tumor formation in a model of skin carcinogenesis. Cancer Cell 7, 219–226 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Lim, K. H. et al. Activation of RalA is critical for Ras-induced tumorigenesis of human cells. Cancer Cell 7, 533–545 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Lambert, J. M. et al. Tiam1 mediates Ras activation of Rac by a PI(3)K-independent mechanism. Nature Cell. Biol. 4, 621–625 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Shibatohge, M. et al. Identification of PLC210, a Caenorhabditis elegans phospholipase C, as a putative effector of Ras. J. Biol. Chem. 273, 6218–6222 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Song, C. et al. Regulation of a novel human phospholipase C, PLCε, through membrane targeting by Ras. J. Biol. Chem. 276, 2752–2757 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Kelley, G. G., Reks, S. E., Ondrako, J. M. & Smrcka, A. V. Phospholipase C(ε): a novel Ras effector. EMBO J. 20, 743–754 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gibbs, J. B. & Oliff, A. The potential of farnesyltransferase inhibitors as cancer chemotherapeutics. Annu. Rev. Pharmacol. Toxicol. 37, 143–166 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Downward, J. Targeting RAS signalling pathways in cancer therapy. Nature Rev. Cancer 3, 11–22 (2003).

    Article  CAS  Google Scholar 

  41. Johnson, L. et al. K-ras is an essential gene in the mouse with partial functional overlap with N-ras. Genes Dev. 11, 2468–2481 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Koera, K. et al. K-ras is essential for the development of the mouse embryo. Oncogene 15, 1151–1159 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Khalaf, W. F. et al. K-Ras is essential for normal fetal liver erythropoiesis. Blood 105, 3538–3541 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Esteban, L. M. et al. Targeted genomic disruption of H-ras and N-ras, individually or in combination, reveals the dispensability of both loci for mouse growth and development. Mol. Cell. Biol. 21, 1444–1452 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Umanoff, H., Edelmann, W., Pellicer, A. & Kucherlapati, R. The murine N-ras gene is not essential for growth and development. Proc. Natl Acad. Sci. USA 92, 1709–1713 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mor, A. & Philips, M. R. Compartmentalized Ras/MAPK signaling. Annu. Rev. Immunol. 24, 771–800 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Hingorani, S. R. & Tuveson, D. A. Ras redux: rethinking how and where Ras acts. Curr. Opin. Genet. Dev. 13, 6–13 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Plowman, S. J. & Hancock, J. F. Ras signaling from plasma membrane and endomembrane microdomains. Biochim. Biophys. Acta 1746, 274–283 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Chiu, V. K. et al. Ras signalling on the endoplasmic reticulum and the Golgi. Nature Cell Biol. 4, 343–350 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Matallanas, D. et al. Distinct utilization of effectors and biological outcomes resulting from site-specific Ras activation: Ras functions in lipid rafts and Golgi complex are dispensable for proliferation and transformation. Mol. Cell. Biol. 26, 100–116 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bivona, T. G. et al. PKC regulates a farnesyl-electrostatic switch on K-Ras that promotes its association with Bcl-XL on mitochondria and induces apoptosis. Mol. Cell 21, 481–493 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Prior, I. A. et al. GTP-dependent segregation of H-ras from lipid rafts is required for biological activity. Nature Cell Biol. 3, 368–375 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Plowman, S. J., Muncke, C., Parton, R. G. & Hancock, J. F. H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton. Proc. Natl Acad. Sci. USA 102, 15500–15505 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Augsten, M. et al. Live-cell imaging of endogenous Ras-GTP illustrates predominant Ras activation at the plasma membrane. EMBO Rep. 7, 46–51 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Jura, N., Scotto-Lavino, E., Sobczyk, A. & Bar-Sagi, D. Differential modification of Ras proteins by ubiquitination. Mol. Cell 21, 679–687 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Bos, J. L. ras oncogenes in human cancer: a review. Cancer Res. 49, 4682–4689 (1989).

    CAS  PubMed  Google Scholar 

  57. Trahey, M. & McCormick, F. A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science 238, 542–545 (1987).

    Article  CAS  PubMed  Google Scholar 

  58. Scheffzek, K. et al. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277, 333–338 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Der, C. J., Finkel, T. & Cooper, G. M. Biological and biochemical properties of human rasH genes mutated at codon 61. Cell 44, 167–176 (1986).

    Article  CAS  PubMed  Google Scholar 

  60. Franken, S. M. et al. Three-dimensional structures and properties of a transforming and a nontransforming glycine-12 mutant of p21H-ras. Biochemistry 32, 8411–8420 (1993).

    Article  CAS  PubMed  Google Scholar 

  61. Colby, W. W., Hayflick, J. S., Clark, S. G. & Levinson, A. D. Biochemical characterization of polypeptides encoded by mutated human Ha-ras1 genes. Mol. Cell. Biol. 6, 730–734 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Marshall, M. S. The effector interactions of p21ras. Trends Biochem. Sci. 18, 250–254 (1993).

    Article  CAS  PubMed  Google Scholar 

  63. White, M. A. et al. Multiple Ras functions can contribute to mammalian cell transformation. Cell 80, 533–541 (1995).

    Article  CAS  PubMed  Google Scholar 

  64. Joneson, T., White, M. A., Wigler, M. H. & Bar-Sagi, D. Stimulation of membrane ruffling and MAP kinase activation by distinct effectors of RAS. Science 271, 810–812 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Khosravi-Far, R. et al. Oncogenic Ras activation of Raf/mitogen-activated protein kinase-independent pathways is sufficient to cause tumorigenic transformation. Mol. Cell. Biol. 16, 3923–3933 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hamad, N. M. et al. Distinct requirements for Ras oncogenesis in human versus mouse cells. Genes Dev. 16, 2045–2057 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rodriguez-Viciana, P. et al. Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 89, 457–467 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Seeburg, P. H., Colby, W. W., Capon, D. J., Goeddel, D. V. & Levinson, A. D. Biological properties of human c-Ha-ras1 genes mutated at codon 12. Nature 312, 71–75 (1984).

    Article  CAS  PubMed  Google Scholar 

  69. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Johnson, L. et al. Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410, 1111–1116 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Guerra, C. et al. Tumor induction by an endogenous K-ras oncogene is highly dependent on cellular context. Cancer Cell 4, 111–120 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Tuveson, D. A. et al. Endogenous oncogenic K-ras (G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell 5, 375–387 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Hingorani, S. R. et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4, 437–450 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Aguirre, A. J. et al. Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev. 17, 3112–3126 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kuhn, R., Schwenk, F., Aguet, M. & Rajewsky, K. Inducible gene targeting in mice. Science 269, 1427–1429. (1995).

    Article  CAS  PubMed  Google Scholar 

  76. Braun, B. S. et al. Somatic activation of oncogenic Kras in hematopoietic cells initiates a rapidly fatal myeloproliferative disorder. Proc. Natl Acad. Sci. USA 101, 597–602 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Chan, I. T. et al. Conditional expression of oncogenic K-ras from its endogenous promoter induces a myeloproliferative disease. J. Clin. Invest. 113, 528–538 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sansom, O. J. et al. Loss of Apc allows phenotypic manifestation of the transforming properties of an endogenous K-ras oncogene in vivo. Proc. Natl Acad. Sci. USA 103, 14122–14127 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Downward, J. Signal transduction. Prelude to an anniversary for the RAS oncogene. Science 314, 433–434 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Malumbres, M. & Barbacid, M. RAS oncogenes: the first 30 years. Nature Rev. Cancer 3, 459–465 (2003).

    Article  CAS  Google Scholar 

  81. Lazaro, C., Ravella, A., Gaona, A., Volpini, V. & Estivill, X. Neurofibromatosis type 1 due to germ-line mosaicism in a clinically normal father. N. Engl. J. Med. 331, 1403–1407 (1994).

    Article  CAS  PubMed  Google Scholar 

  82. Poyhonen, M., Kytola, S. & Leisti, J. Epidemiology of neurofibromatosis type 1 (NF1) in northern Finland. J. Med. Genet. 37, 632–636 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cawthon, R. M. et al. A major segment of the neurofibromatosis type 1 gene: cDNA sequence, genomic structure, and point mutations. Cell 62, 193–201 (1990).

    Article  CAS  PubMed  Google Scholar 

  84. Marchuk, D. A. et al. cDNA cloning of the type 1 neurofibromatosis gene: complete sequence of the NF1 gene product. Genomics 11, 931–940 (1991).

    Article  CAS  PubMed  Google Scholar 

  85. Viskochil, D. et al. Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locus. Cell 62, 187–192 (1990).

    Article  CAS  PubMed  Google Scholar 

  86. Xu, G. et al. The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell 62, 599–608 (1990).

    Article  CAS  PubMed  Google Scholar 

  87. Martin, G. A. et al. The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 63, 843–849 (1990).

    Article  CAS  PubMed  Google Scholar 

  88. Ingram, D. A. et al. Genetic and biochemical evidence that haploinsufficiency of the Nf1 tumor suppressor gene modulates melanocyte and mast cell fates in vivo. J. Exp. Med. 191, 181–188 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhu, Y., Ghosh, P., Charnay, P., Burns, D. K. & Parada, L. F. Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science 296, 920–922. (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yang, F. C. et al. Neurofibromin-deficient Schwann cells secrete a potent migratory stimulus for Nf1+/− mast cells. J. Clin. Invest. 112, 1851–1861 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Tartaglia, M. et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nature Genet. 29, 465–468 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Mohi, M. G. & Neel, B. G. The role of Shp2 (PTPN11) in cancer. Curr. Opin. Genet. Dev. 17, 23–30 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Neel, B. G., Gu, H. & Pao, L. The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem. Sci. 28, 284–293 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Qu, C. K. Role of the SHP-2 tyrosine phosphatase in cytokine-induced signaling and cellular response. Biochim. Biophys. Acta 1592, 297–301 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Yang, W. et al. An Shp2/SFK/Ras/Erk signaling pathway controls trophoblast stem cell survival. Dev. Cell 10, 317–327 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Shi, Z. Q., Yu, D. H., Park, M., Marshall, M. & Feng, G. S. Molecular mechanism for the Shp-2 tyrosine phosphatase function in promoting growth factor stimulation of Erk activity. Mol. Cell. Biol. 20, 1526–1536 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Frearson, J. A. & Alexander, D. R. The phosphotyrosine phosphatase SHP-2 participates in a multimeric signaling complex and regulates T cell receptor (TCR) coupling to the Ras/mitogen-activated protein kinase (MAPK) pathway in Jurkat T cells. J. Exp. Med. 187, 1417–1426 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gadina, M., Stancato, L. M., Bacon, C. M., Larner, A. C. & O'Shea, J. J. Involvement of SHP-2 in multiple aspects of IL-2 signaling: evidence for a positive regulatory role. J. Immunol. 160, 4657–4661 (1998).

    CAS  PubMed  Google Scholar 

  99. Bennett, A. M., Tang, T. L., Sugimoto, S., Walsh, C. T. & Neel, B. G. Protein-tyrosine-phosphatase SHPTP2 couples platelet-derived growth factor receptor β to Ras. Proc. Natl Acad. Sci. USA 91, 7335–7339 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cleghon, V. et al. Opposing actions of CSW and RasGAP modulate the strength of Torso RTK signaling in the Drosophila terminal pathway. Mol. Cell 2, 719–727. (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Klinghoffer, R. A. & Kazlauskas, A. Identification of a putative Syp substrate, the PDGF β receptor. J. Biol. Chem. 270, 22208–22217 (1995).

    Article  CAS  PubMed  Google Scholar 

  102. Agazie, Y. M. & Hayman, M. J. Molecular mechanism for a role of SHP2 in epidermal growth factor receptor signaling. Mol. Cell. Biol. 23, 7875–7886 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hanafusa, H., Torii, S., Yasunaga, T., Matsumoto, K. & Nishida, E. Shp2, an SH2-containing protein-tyrosine phosphatase, positively regulates receptor tyrosine kinase signaling by dephosphorylating and inactivating the inhibitor Sprouty. J. Biol. Chem. 279, 22992–22995 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Jarvis, L. A., Toering, S. J., Simon, M. A., Krasnow, M. A. & Smith-Bolton, R. K. Sprouty proteins are in vivo targets of Corkscrew/SHP-2 tyrosine phosphatases. Development 133, 1133–1142 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Zhang, S. Q. et al. Shp2 regulates Src family kinase activity and Ras/Erk activation by controlling Csk recruitment. Mol. Cell 13, 341–355 (2004).

    Article  PubMed  Google Scholar 

  106. Ren, Y. et al. Roles of Gab1 and SHP2 in paxillin tyrosine dephosphorylation and Src activation in response to epidermal growth factor. J. Biol. Chem. 279, 8497–8505 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Keilhack, H., David, F. S., McGregor, M., Cantley, L. C. & Neel, B. G. Diverse biochemical properties of SHP2 mutants: Implications for disease phenotypes. J. Biol. Chem. 280, 30984–30993 (2005). This study presents extensive biochemical analysis of a large panel of mutant SHP2 proteins associated with Noonan syndrome and leukaemia and demonstrates that mutations in PTPN11 can cause disease by multiple mechanisms, which include increasing SHP2 basal activation, and affecting SH2-domain binding to phosphotyrosyl ligands, and/or substrate specificity.

    Article  CAS  PubMed  Google Scholar 

  108. Tartaglia, M. et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nature Genet. 34, 148–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Tartaglia, M. et al. Genetic evidence for lineage-related and differentiation stage-related contribution of somatic PTPN11 mutations to leukemogenesis in childhood acute leukemia. Blood 104, 307–313 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Loh, M. L. et al. Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood 103, 2325–2331 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Bentires-Alj, M. et al. Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Res. 64, 8816–8820 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Araki, T. et al. Mouse model of Noonan syndrome reveals cell type- and gene dosage-dependent effects of PTPN11 mutation. Nature Med. 10, 849–857 (2004). The authors develop an elegant knock-in mouse model of Noonan syndrome that reveals the cell specific effects of expressing a Noonan syndrome-associated mutant SHP2 protein during development.

    Article  CAS  PubMed  Google Scholar 

  113. Gorlin, R. J., Anderson, R. C. & Blaw, M. Multiple lentigenes syndrome. Am. J. Dis. Child. 117, 652–662 (1969).

    Article  CAS  PubMed  Google Scholar 

  114. Hanna, N. et al. Reduced phosphatase activity of SHP-2 in LEOPARD syndrome: consequences for PI3K binding on Gab1. FEBS Lett. 580, 2477–2482 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Estep, A. L., Tidyman, W. E., Teitell, M. A., Cotter, P. D. & Rauen, K. A. HRAS mutations in Costello syndrome: detection of constitutional activating mutations in codon 12 and 13 and loss of wild-type allele in malignancy. Am. J. Med. Genet. A 140, 8–16 (2006).

    Article  PubMed  CAS  Google Scholar 

  116. Gripp, K. W. et al. HRAS mutation analysis in Costello syndrome: genotype and phenotype correlation. Am. J. Med. Genet. A 140, 1–7 (2006).

    Article  PubMed  CAS  Google Scholar 

  117. Kerr, B. et al. Genotype-phenotype correlation in Costello syndrome: HRAS mutation analysis in 43 cases. J. Med. Genet. 43, 401–405 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zampino, G. et al. Diversity, parental germline origin, and phenotypic spectrum of de novo HRAS missense changes in Costello syndrome. Hum. Mutat. 28, 265–272 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Proud, C. Guanine nucleotides, protein phosphorylation and the control of translation. Trends Biochem. Sci. 12, 73–77 (1986).

    Article  Google Scholar 

  120. Carta, C. et al. Germline missense mutations affecting KRAS isoform B are associated with a severe Noonan syndrome phenotype. Am. J. Hum. Genet. 79, 129–135 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zenker, M. et al. Expansion of the genotypic and phenotypic spectrum in patients with KRAS germline mutations. J. Med. Genet. 44, 131–135 (2006).

    Article  PubMed  CAS  Google Scholar 

  122. Quilliam, L. A. et al. Biological and structural characterization of a Ras transforming mutation at the phenylalanine-156 residue, which is conserved in all members of the Ras superfamily. Proc. Natl Acad. Sci. USA 92, 1272–1276 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Roberts, A. et al. The cardio-facio-cutaneous (CFC) syndrome: a review. J. Med. Genet. (2006).

  124. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Wellbrock, C., Karasarides, M. & Marais, R. The RAF proteins take centre stage. Nature Rev. Mol. Cell Biol. 5, 875–885 (2004).

    Article  CAS  Google Scholar 

  126. Garnett, M. J. & Marais, R. Guilty as charged: B-RAF is a human oncogene. Cancer Cell 6, 313–319 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Wan, P. T. et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116, 855–867 (2004). This study presents the first crystal structure of the BRAF kinase domain and the authors interrogate the biochemical properties of a panel of cancer-associated BRAF mutant proteins, some of which are kinase impaired and signal to ERK through a new mechanism involving Raf.

    Article  CAS  PubMed  Google Scholar 

  128. Pollock, P. M. et al. High frequency of BRAF mutations in nevi. Nature Genet. 33, 19–20 (2003).

    Article  CAS  PubMed  Google Scholar 

  129. Yazdi, A. S. et al. Mutations of the BRAF gene in benign and malignant melanocytic lesions. J. Invest. Dermatol. 121, 1160–1162 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Dankort, D. et al. A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors. Genes Dev. 21, 379–384 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Solit, D. B. et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature 439, 358–362 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. King, A. J. et al. Demonstration of a genetic therapeutic index for tumors expressing oncogenic BRAF by the kinase inhibitor SB-590885. Cancer Res. 66, 11100–11105 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Margarit, S. M. et al. Structural evidence for feedback activation by Ras. GTP of the Ras-specific nucleotide exchange factor SOS. Cell 112, 685–695 (2003).

    Article  CAS  PubMed  Google Scholar 

  134. Sondermann, H. et al. Structural analysis of autoinhibition in the Ras activator Son of sevenless. Cell 119, 393–405 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Friedman, A. & Perrimon, N. Genetic screening for signal transduction in the era of network biology. Cell 128, 225–231 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Friedman, A. & Perrimon, N. A functional RNAi screen for regulators of receptor tyrosine kinase and ERK signalling. Nature 444, 230–234 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Li, Z. et al. Developmental stage-selective effect of somatically mutated leukemogenic transcription factor GATA1. Nature Genet. 37, 613–619 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Neal, S. E., Eccleston, J. F., Hall, A. & Webb, M. R. Kinetic analysis of the hydrolysis of GTP by p21N-ras. The basal GTPase mechanism. J. Biol. Chem. 263, 19718–19722 (1988).

    Article  CAS  PubMed  Google Scholar 

  139. John, J., Frech, M. & Wittinghofer, A. Biochemical properties of Ha-ras encoded p21 mutants and mechanism of the autophosphorylation reaction. J. Biol. Chem. 263, 11792–11799 (1988).

    Article  CAS  PubMed  Google Scholar 

  140. Gibbs, J. B., Sigal, I. S., Poe, M. & Scolnick, E. M. Intrinsic GTPase activity distinguishes normal and oncogenic ras p21 molecules. Proc. Natl Acad. Sci. USA 81, 5704–5708 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Boriack-Sjodin, P. A., Margarit, S. M., Bar-Sagi, D. & Kuriyan, J. The structural basis of the activation of Ras by Sos. Nature 394, 337–343 (1998).

    Article  CAS  PubMed  Google Scholar 

  142. Lauchle, J. O., Braun, B. S., Loh, M. L. & Shannon, K. Inherited predispositions and hyperactive Ras in myeloid leukemogenesis. Pediatr. Blood Cancer 46, 579–585 (2006).

    Article  PubMed  Google Scholar 

  143. Chan, R. J. & Feng, G. S. PTPN11 is the first identified proto-oncogene that encodes a tyrosine phosphatase. Blood 109, 862–867 (2006).

    Article  PubMed  CAS  Google Scholar 

  144. Tartaglia, M., Niemeyer, C. M., Shannon, K. M. & Loh, M. L. SHP-2 and myeloid malignancies. Curr. Opin. Hematol. 11, 44–50 (2004).

    Article  CAS  PubMed  Google Scholar 

  145. Mohi, M. G. et al. Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by SHP2 (PTPN11) mutations. Cancer Cell 7, 179–191 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Schubbert, S. et al. Functional analysis of leukemia-associated PTPN11 mutations in primary hematopoietic cells. Blood 106, 311–317 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Le, D. T. et al. Somatic inactivation of Nf1 in hematopoietic cells results in a progressive myeloproliferative disorder. Blood 103, 4243–4250 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. Bamford, S. et al. The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br. J. Cancer 91, 355–358 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank B. Neel for insightful discussions. Some of the research from our laboratories discussed in this article was supported by grants from the US Army Neurofibromatosis Research Program and the National Cancer Institute, and by a SCOR award from the Leukemia and Lymphoma Society of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gideon Bollag.

Ethics declarations

Competing interests

Gideon Bollag is an employee of Plexxikon Inc.

Related links

Related links

DATABASES

OMIM

cardio-facio-cutaneous syndrome

Costello syndrome

Down syndrome

JMML

LEOPARD syndrome

NF1

Noonan syndrome

FURTHER INFORMATION

Kevin Shannon's laboratory homepage

Plexxikon homepage

Sanger Institute Catalogue of Somatic Mutations in Cancer

Glossary

Pulmonic stenosis

A common form of congenital heart disease that frequently requires surgical correction. Pulmonic stenosis is a common feature of Noonan syndrome.

Phaeochromocytoma

A malignant tumour that arises in chromaffin cells within the adrenal medulla.

Farnesylation

Farnesyltransferases add farnesyl (15-carbon isoprene) groups to Ras and many other cellular proteins. This post-translational modification is essential for targeting proteins to the plasma membrane and other subcellular compartments.

Prenyl transferases

A general class of enzymes that includes both farnesyltransferases and geranylgeranyl transferases, which transfer prenyl moieties (for example, farnesyl or geranylgeranyl groups) to cellular proteins.

Geranylgeranylation

Geranylgeranyl tranferases add geranylgeranyl (20-carbon isoprene) groups to cellular proteins in order to direct membrane localization. Ras proteins are not normally geranylgeranylated, but KRAS and NRAS are processed by geranylgeranyl transferases in the absence of farnesylation.

Palmitoylation

The post-translational addition of palmitate (16-carbon fatty acid) to cysteine residues on proteins to modulate membrane affinity.

Arginine finger

A highly conserved residue in GTPase-activating proteins that directly interacts with the P loop of Ras proteins and is essential for accelerating intrinsic Ras GTPase activity.

Second site mutations

This refers to the creation of mutant proteins that contain two independent mutations. As applied to Ras, this typically involves mutating an amino acid in the switch I or II domains in the context of an oncogenic V12 or D12 protein.

Latent allele

Conditional mutant alleles in mice are referred to as latent because they are present in the animal and can be inducibly expressed in specific populations of cells.

Hyperplasia

This refers to an increase in the number of cells in a tissue that are generally non-transformed.

Myeloproliferative disorder

A clonal myeloid malignancy in which there are excessive numbers of cells within one or more lineages that retain some capacity to differentiate in vivo.

Lisch nodules

Hyperpigmented lesions in the eye that are a hallmark of NF1 disease.

Neurofibrosarcoma

A malignant tumour of connective tissue that generally arises in the extremities and is difficult to cure. This cancer is also referred to as a malignant peripheral nerve sheath tumour.

Astrocytoma

A tumour of the central nervous system that shows a range of histological and biological properties from benign (grade I) to highly malignant (grade IV).

Macrocephaly

This term refers to an abnormally large head circumference (>ninety-fifth percentile for age).

Mast cells

Specialized haematopoietic cells derived from myeloid progenitors that are abundant in tissues and mediate local inflammatory and immunological responses.

Melanocytes

Specialized cells within the skin that produce the pigment melanin. Melanocyte precursors are the cells of origin in melanoma.

Schwann cells

Specialized neural crest cells within peripheral nerves that have a central role in myelination. Compelling genetic evidence supports the idea that NF1 inactivation in Schwann cells is essential for neurofibroma formation.

Plexiform neurofibroma

A developmental lesion in individuals with NF1 that is frequently disfiguring and may cause substantial morbidity by impinging on normal anatomic structures. Plexiform neurofibromas can acquire additional genetic lesions and progress to malignant peripheral nerve-sheath tumours.

Facial dysmorphism and craniofacial abnormalities

These terms refer to phenotypic abnormalities of the skull and face that result from an abnormal pattern of bone and cartilage development.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schubbert, S., Shannon, K. & Bollag, G. Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 7, 295–308 (2007). https://doi.org/10.1038/nrc2109

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2109

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing