Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder

Abstract

We are performing whole-genome sequencing of families with autism spectrum disorder (ASD) to build a resource (MSSNG) for subcategorizing the phenotypes and underlying genetic factors involved. Here we report sequencing of 5,205 samples from families with ASD, accompanied by clinical information, creating a database accessible on a cloud platform and through a controlled-access internet portal. We found an average of 73.8 de novo single nucleotide variants and 12.6 de novo insertions and deletions or copy number variations per ASD subject. We identified 18 new candidate ASD-risk genes and found that participants bearing mutations in susceptibility genes had significantly lower adaptive ability (P = 6 × 10−4). In 294 of 2,620 (11.2%) of ASD cases, a molecular basis could be determined and 7.2% of these carried copy number variations and/or chromosomal abnormalities, emphasizing the importance of detecting all forms of genetic variation as diagnostic and therapeutic targets in ASD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of sample and data processing in MSSNG.
Figure 2: Characteristics and quality of WGS from different sequencing platforms.
Figure 3: ASD-susceptibility genes and loci.
Figure 4: CNV characterization via WGS reads in the MSSNG Portal.
Figure 5: Phenotype comparison for the samples with and without identified mutations.
Figure 6: Interaction similarity network of ASD-risk genes.

Similar content being viewed by others

References

  1. Lai, M.C., Lombardo, M.V. & Baron-Cohen, S. Autism. Lancet 383, 896–910 (2014).

    Article  PubMed  Google Scholar 

  2. Robinson, E.B. et al. Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population. Nat. Genet. 48, 552–555 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Anagnostou, E. et al. Autism spectrum disorder: advances in evidence-based practice. CMAJ 186, 509–519 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Carter, M.T. & Scherer, S.W. Autism spectrum disorder in the genetics clinic: a review. Clin. Genet. 83, 399–407 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Miles, J.H. Complex autism spectrum disorders and cutting-edge molecular diagnostic tests. J. Am. Med. Assoc. 314, 879–880 (2015).

    Article  CAS  Google Scholar 

  6. Bourgeron, T. From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat. Rev. Neurosci. 16, 551–563 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. de la Torre-Ubieta, L., Won, H., Stein, J.L. & Geschwind, D.H. Advancing the understanding of autism disease mechanisms through genetics. Nat. Med. 22, 345–361 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Scherer, S.W. & Dawson, G. Risk factors for autism: translating genomic discoveries into diagnostics. Hum. Genet. 130, 123–148 (2011).

    Article  PubMed  Google Scholar 

  9. Tammimies, K. et al. Molecular diagnostic yield of chromosomal microarray analysis and whole-exome sequencing in children with autism spectrum disorder. J. Am. Med. Assoc. 314, 895–903 (2015).

    Article  CAS  Google Scholar 

  10. Betancur, C. Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting. Brain Res. 1380, 42–77 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Szatmari, P. et al. Autism Genome Project. Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat. Genet. 39, 319–328 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Leblond, C.S. et al. Meta-analysis of SHANK mutations in autism spectrum disorders: a gradient of severity in cognitive impairments. PLoS Genet. 10, e1004580 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Iossifov, I. et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature 515, 216–221 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jiang, Y.H. et al. Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing. Am. J. Hum. Genet. 93, 249–263 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marshall, C.R. et al. Structural variation of chromosomes in autism spectrum disorder. Am. J. Hum. Genet. 82, 477–488 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Miller, D.T. et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am. J. Hum. Genet. 86, 749–764 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pinto, D. et al. Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. Am. J. Hum. Genet. 94, 677–694 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yuen, R.K. et al. Whole-genome sequencing of quartet families with autism spectrum disorder. Nat. Med. 21, 185–191 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Sahin, M. & Sur, M. Genes, circuits, and precision therapies for autism and related neurodevelopmental disorders. Science 350, aab3897 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Stavropoulos, D.J. et al. Whole-genome sequencing expands diagnostic utility and improves clinical management in paediatric medicine. NPJ Genome Med 1, 15012 (2016).

    Article  CAS  Google Scholar 

  21. Yuen, R.K. et al. Genome-wide characteristics of de novo mutations in autism. NPJ Genome Med. 1, 160271–1602710 (2016).

    Google Scholar 

  22. Buxbaum, J.D. et al. The autism sequencing consortium: large-scale, high-throughput sequencing in autism spectrum disorders. Neuron 76, 1052–1056 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. De Rubeis, S. et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515, 209–215 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sanders, S.J. et al. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron 87, 1215–1233 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Leblond, C.S. et al. Genetic and functional analyses of SHANK2 mutations suggest a multiple hit model of autism spectrum disorders. PLoS Genet. 8, e1002521 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Talkowski, M.E. et al. Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell 149, 525–537 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Noor, A. et al. Disruption at the PTCHD1 locus on xp22.11 in autism spectrum disorder and intellectual disability. Sci. Transl. Med. 2, 49ra68 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xiong, H.Y. et al. RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease. Science 347, 1254806 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Anney, R. et al. Individual common variants exert weak effects on the risk for autism spectrum disorders. Hum. Mol. Genet. 21, 4781–4792 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Glazer, D. Atoms, bits, and cells. Appl. Transl. Genomics 6, 11–14 (2015).

    Article  Google Scholar 

  31. Global Alliance for Genomics and Health. GENOMICS. A federated ecosystem for sharing genomic, clinical data. Science 352, 1278–1280 (2016).

  32. Stein, L.D. The case for cloud computing in genome informatics. Genome Biol. 11, 207 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  33. An, J.Y. et al. Towards a molecular characterization of autism spectrum disorders: an exome sequencing and systems approach. Transl. Psychiatry 4, e394 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kong, A. et al. Rate of de novo mutations and the importance of father's age to disease risk. Nature 488, 471–475 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Michaelson, J.J. et al. Whole-genome sequencing in autism identifies hot spots for de novo germline mutation. Cell 151, 1431–1442 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Richards, C.S. et al. ACMG recommendations for standards for interpretation and reporting of sequence variations: revisions 2007. Genet. Med. 10, 294–300 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Utami, K.H. et al. Impaired development of neural-crest cell-derived organs and intellectual disability caused by MED13L haploinsufficiency. Hum. Mutat. 35, 1311–1320 (2014).

    CAS  PubMed  Google Scholar 

  39. Stender, J.D. et al. Control of proinflammatory gene programs by regulated trimethylation and demethylation of histone H4K20. Mol. Cell 48, 28–38 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ciernia, A.V. & LaSalle, J. The landscape of DNA methylation amid a perfect storm of autism aetiologies. Nat. Rev. Neurosci. 17, 411–423 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  41. Sanders, S.J. et al. Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron 70, 863–885 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Männik, K. et al. Copy number variations and cognitive phenotypes in unselected populations. J. Am. Med. Assoc. 313, 2044–2054 (2015).

    Article  Google Scholar 

  43. Ameis, S.H. et al. A diffusion tensor imaging study in children with ADHD, autism spectrum disorder, OCD, and matched controls: distinct and non-distinct white matter disruption and dimensional brain-behavior relationships. Am. J. Psychiatry 173, 1213–1222 (2016).

    Article  PubMed  Google Scholar 

  44. Uddin, M. et al. Brain-expressed exons under purifying selection are enriched for de novo mutations in autism spectrum disorder. Nat. Genet. 46, 742–747 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Jacquemont, S. et al. Mirror extreme BMI phenotypes associated with gene dosage at the chromosome 16p11.2 locus. Nature 478, 97–102 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hadley, D. et al. The impact of the metabotropic glutamate receptor and other gene family interaction networks on autism. Nat. Commun. 5, 4074 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Samocha, K.E. et al. A framework for the interpretation of de novo mutation in human disease. Nat. Genet. 46, 944–950 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Corominas, R. et al. Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism. Nat. Commun. 5, 3650 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Walker, S. & Scherer, S.W. Identification of candidate intergenic risk loci in autism spectrum disorder. BMC Genomics 14, 499 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sparrow, S.S., Balla, D.A., Cicchetti, D.V., Harrison, P.L. & Doll, E.A. Vineland Adaptive Behavior Scales (American Guidance Service, 1984).

  51. Van der Auwera, G.A. et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinformatics 43, 1–33 (2013).

    Google Scholar 

  52. Pan, C. et al. Interactive analytics for very large scale genomic data. Preprint at http://biorxiv.org/content/early/2015/12/24/035295.

  53. Merico, D. et al. Compound heterozygous mutations in the noncoding RNU4ATAC cause Roifman syndrome by disrupting minor intron splicing. Nat. Commun. 6, 8718 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Auton, A. et al. Genomes Project. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Fu, W. et al. Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants. Nature 493, 216–220 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Siepel, A. et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15, 1034–1050 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kumar, P., Henikoff, S. & Ng, P.C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4, 1073–1081 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Adzhubei, I.A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Reva, B., Antipin, Y. & Sander, C. Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res. 39, e118 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Köhler, S. et al. The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data. Nucleic Acids Res. 42, D966–D974 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Stenson, P.D. et al. Human Gene Mutation Database (HGMD): 2003 update. Hum. Mutat. 21, 577–581 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Solomon, B.D., Nguyen, A.D., Bear, K.A. & Wolfsberg, T.G. Clinical genomic database. Proc. Natl. Acad. Sci. USA 110, 9851–9855 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Warde-Farley, D. et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 38, W214–W220 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Merico, D., Isserlin, R., Stueker, O., Emili, A. & Bader, G.D. Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS One 5, e13984 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Abyzov, A., Urban, A.E., Snyder, M. & Gerstein, M. CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 21, 974–984 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhu, M. et al. Using ERDS to infer copy-number variants in high-coverage genomes. Am. J. Hum. Genet. 91, 408–421 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zarrei, M., MacDonald, J.R., Merico, D. & Scherer, S.W. A copy number variation map of the human genome. Nat. Rev. Genet. 16, 172–183 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Huang, W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  CAS  Google Scholar 

  70. Hopkins, A.L. & Groom, C.R. The druggable genome. Nat. Rev. Drug Discov. 1, 727–730 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Liu, K., Liu, Y., Lau, J.L. & Min, J. Epigenetic targets and drug discovery Part 2: histone demethylation and DNA methylation. Pharmacol. Ther. 151, 121–140 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Wagner, A.H. et al. DGIdb 2.0: mining clinically relevant drug-gene interactions. Nucleic Acids Res. 44 D1036–D1044 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the families for their participation in the study, The Centre for Applied Genomics and Google for their analytical and technical support, and staff at Autism Speaks for organizational and fundraising support. This work was funded by Autism Speaks, Autism Speaks Canada, the Canadian Institute for Advanced Research, the University of Toronto McLaughlin Centre, Genome Canada/Ontario Genomics Institute, the Government of Ontario, the Canadian Institutes of Health Research (CIHR), NeuroDevNet, Ontario Brain Institute, the Catherine and Maxwell Meighen Foundation and The Hospital for Sick Children Foundation. Special thanks to B. and (the late) S. Wright for their vision in helping to conceptualize and develop this project and to foundational philanthropic supporters C. Dolan, G. Gund, B. Marcus, V. and J. Morgan and S. Wise. R.K.C.Y. is funded by the CIHR Postdoctoral Fellowship, NARSAD Young Investigator award and Thrasher Early Career Award. R.W. is funded by the Ontario Brain Institute and NeuroDevNet. M.U. is funded by the Banting Postdoctoral Fellowship. M.W. is funded by a CIHR (Institute of Genetics) Clinical Investigatorship Award. L.Z. is funded by the Stollery Children's Hospital Foundation Chair in Autism Research. P.S. is funded by the Patsy and Jamie Anderson Chair in Child and Youth Mental Health. B.M.K. is funded by the Canada Research Chair in Law and Medicine. S.W.S. is funded by the GlaxoSmithKline-CIHR Chair in Genome Sciences at the University of Toronto and The Hospital for Sick Children.

Author information

Authors and Affiliations

Authors

Contributions

R.K.C.Y. and S.W.S. conceived and designed the experiments. R.K.C.Y., D.M., M.B., B.T., R.V.P., J. Whitney, N.D., J. Bingham, Z.W., S.W. and G.P. processed and analyzed the whole genome sequencing data. S.W., L.D., A.J.S.C., S.K., T.P., E.J.H. and S.L. designed and performed experiments for variant characterization and validation. J.A.B., C.R.M., M.U., M.Z., E.D., S.L.P., W.E., K.H., W.L., J.R.M., T.N., W.W.L.S., F.J.T., J. Wei, L.X., W.V.E., S.T., B.J.F., J.T.R. and L.J.S. helped perform different components of analysis and validation experiments. R.K.C.Y., M.B., J.L.H., R.H.R., D.G., M.T.P. and S.W.S. coordinated the whole genome sequencing experiments. R.K.C.Y., R.H.R., D.G., M.T.P. and S.W.S. conceived and coordinated the project. N.H., A.-M.T., E.K., W.R., I.D., S.J., B.M.M., B.K., M.S., C. Cytrynbaum, R.W., L.Z., M.W.-S., J. Brian, L.S., A.I., K.D.-T., A.T., C. Chrysler, J.L., T.S.-L., I.M.S., X.L., R.N., V.S., A.F., E.H.C., S.D., A.E., L.G., B.A.M., J.R.P., S.J.S., J.V., B.A.F., M.E., M.T.C., J.H., B.M.K., E.A. and P.S. managed, recruited, diagnosed and examined the recruited participants. R.K.C.Y. and S.W.S. wrote the manuscript.

Corresponding author

Correspondence to Stephen W Scherer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Ethnicity inference from whole genome sequencing.

(a) Principle component analysis with HapMap samples using PLINK in two dimensions. (b) Principle component analysis with HapMap samples using PLINK in three dimensions.

Supplementary Figure 2 Pedigrees of families with mutations in putative novel ASD-risk genes.

Families exhibiting loss-of-function or de novo missense mutations in (a) MED3, (b) PHF3, (c) PER2 and (d) HECTD4 are shown. The de novo or inherited variant alleles are shown below each family member. ‘‘+’’ indicates the allele containing the reference (presumably wild-type) sequence. Males are denoted by squares and females by circles. Symbol with dash line indicates that the sample was not whole-genome sequenced. NA indicates that no DNA sample was available for testing. Black symbols indicate individuals diagnosed with ASD. Arrows pointing to the symbols indicate ASD probands in each family.

Supplementary Figure 3 Screen captures of MSSNG portal.

(a) Variant search interface. (b) Example of variant search results. (c) Example of gene info search results. (d) Example of read depth search results.

Supplementary Figure 4 Distribution of de novo mutation detection by platforms.

Fraction of samples in different number of de novo mutations detected by Complete Genomics (CG) and Illumina (ILNM) are shown.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary note (PDF 3396 kb)

Supplementary Methods Checklist (PDF 350 kb)

Supplementary Table 1

Quality of WGS. (XLSX 914 kb)

Supplementary Table 2

Number of de novo SNVs and indels. (XLSX 72 kb)

Supplementary Table 3

All de novo variants detected. (XLSX 7305 kb)

Supplementary Table 4

All de novo LOF variants detected. (XLSX 36 kb)

Supplementary Table 5

All damaging variants in ASD-risk genes. (XLSX 25 kb)

Supplementary Table 6

Genes associated with syndromic or related disorders and their potential drug targets (XLSX 14 kb)

Supplementary Table 7

Summary of all samples included in MSSNG DB4. (XLSX 168 kb)

Supplementary Table 8

Pathogenic CNVs detected. (XLSX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

C Yuen, R., Merico, D., Bookman, M. et al. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat Neurosci 20, 602–611 (2017). https://doi.org/10.1038/nn.4524

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4524

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing