Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH

Abstract

At least five adult–onset neurodegenerative diseases, including Huntington disease (HD), and dentatorubral–pallidoluysian atrophy (DRPLA) are produced by genes containing a variably increased CAC repeat within the coding region1–4. The size range of the repeats is similar in all diseases; unaffected individuals have fewer than 30 CAG repeats, whereas affected patients usually have more than 40 repeats. The size of the inherited CAG repeat correlates with the severity and age of disease onset1,5–7. The CAG triplet repeat produces a polyglutamine domain in the expressed proteins3,8–10. All of these diseases are inherited in a dominant fashion, and a pathologic gain of function in gene carriers has been proposed. We sought to identify proteins in the brain that selectively interact with polyglutamine–domain proteins, hypothesizing that the polyglutamine domain may determine protein–protein interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Koide, R. et al. Unstable expansion of CAG repeat in hereditary dentatorubralpallidoluysian atrophy (DRPLA). Nature Genet. 6, 9–13 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Nagafuchi, S. et al. Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nature Genet. 6, 14–18 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72, 971–983 (1993).

    Article  Google Scholar 

  4. Willems, P.J. Dynamic mutations hit double figures. Nature Genet. 8, 213–215 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Andrew, S.E. et al. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nature Genet. 4, 398–403 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Ranum, L.P.W. et al. Molecular and clinical correlations in spinocerebellar ataxia type I—evidence for familial effects on the age at onset. Am. J. Hum. Genet. 55, 244–252 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kawaguchi, Y. et al. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nature Genet. 8, 221–227 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Nagafuchi, S. et al. Structure and expression of the gene responsible for the triplet repeat disorder, dentatorubral and pallidoluysian atrophy (DRPLA). Nature Genet. 8, 177–182 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Jou, Y.S. & Myers, R.M. Evidence from antibody studies that the CAG repeat in the Huntington disease gene is expressed in the protein. Hum. Mol. Genet. 4, 465–469 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. La Spada, A.R., Wilson, E.M., Lubahn, D.B., Harding, A.E. & Fischbeck, K.H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Yazawa, I. et al. Abnormal gene product identified in hereditary dentatorubralpallidoluysian atrophy (DRPLA) brain. Nature Genet. 10, 99–103 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Meyer-Siegler, K. et al. A human nuclear uracil DNA glycosylase is the 37-kDa subunit of glyceraldehyde-3-phosphate dehydrogenase. Proc. Natl. Acad. Sci. USA 88, 8460–8464 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Beal, M.F. Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann. Neurol. 31, 119–130 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Nagy, E. & Rigby, W.F. Glyceraldehyde-3-phosphate dehydrogenase selectively binds AU-rich RNA in the NAD(+)-binding region (Rossmann fold). J. Biol. Chem. 270, 2755–2763 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Nakai, A., Satoh, M., Hirayoshi, K. & Nagata, K. Identification of the ATP-binding heat-inducible protein of MR = 37,000 as glyceraldehyde-3-phosphate dehydrogenase. Biochem. Biophys. Res. Commun. 176, 59–64 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Zeng, F.Y., Gerke, V. & Gabius, H.J. Identification of annexin II, annexin VI and glyceraldehyde-3-phosphate dehydrogenase as calcyclin-binding proteins in bovine heart. Int. J. Blochem. 25, 1019–1027 (1993).

    Article  CAS  Google Scholar 

  17. Mejean, C., Pons, F., Benyamin, Y. & Roustan, C. Antigenic probes locate binding sites for the glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, aldolase and phosphofructokinase on the actin monomer in microfilaments. Biochem. J. 264, 671–677 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Somers, M., Engelborghs, Y. & Baert, J. Analysis of the binding of glyceralde-hyde-3-phosphate dehydrogenase to microtubules, the mechanism of bundle formation and the linkage effect. Eur. J. Biochem. 193, 437–444 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Schulze, H. et al. Rat brain glyceraldehyde-3-phosphate dehydrogenase interacts with the recombinant cytoplasmic domain of Alzheimer's beta-amyloid precursor protein. J. Neurochem. 60, 1915–1922 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Perutz, M.F., Johnson, T., Suzuki, M. & Finch, J.T. Glutamine repeats as polar zippers: Their possible role in inherited neurodegenerative diseases. Proc. Natl. Acad. Sci. USA 91, 5355–5358 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stott, K., Blackburn, J.M., Butler, P.J.G. & Perutz, M. Incorporation of glutamine repeats makes protein oligomerize: Implications for neurodegenerative diseases. Proc. Natl. Acad. Sci. USA 92 6509–6513 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Roses, A.D. Alzheimer's disease as a model of molecular gerontology. J. Natl. Inst. Health Res. 7 51–57 (1995).

    Google Scholar 

  23. Trottier, Y. et al. Cellular localization of the Huntington's disease protein and discrimination of the normal and mutated form. Nature Genet. 10, 104–110 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Sharp, A.H. et al. Widespread expression of Huntingtons disease gene (IT15) protein product. Neuron 14, 1065–1074 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. DiFiglia, M. et al. Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 14, 1075–1081 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. van Tuinen, E. & Riezman, H. Immunolocalization of glyceraldehyde-3-phosphate dehydrogenase, hexokinase, and carboxypeptidase Y in yeast cells at the ultrastructural level. J. Histochem. Cytochem. 35, 327–333 (1987).

    Article  CAS  PubMed  Google Scholar 

  27. Minaschek, G., Groschel-Stewart, U., Blum, S. & Bereiter-Hahn, J. Microcompartmentation of glycolytic enzymes in cultured cells. Eur. J. Cell Biol. 58, 418–428 (1992).

    CAS  PubMed  Google Scholar 

  28. Ronai, Z. Glycolytic enzymes as DNA binding proteins. Int. J. Biochem. 25, 1073–1076 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Morgenegg, G. et al. Glyceraldehyde-3-phosphate dehydrogenase is a nonhistone protein and a possible activator of transcription in neurons. J. Neurochem. 47 54–62 (1986).

    Article  CAS  PubMed  Google Scholar 

  30. Knull, H.R. & Fillmore, S.J. Glycolytic enzyme levels in synaptosomes. Comp. Biochem. Physiol. [B] 81, 349–351 (1985).

    CAS  Google Scholar 

  31. Hoogeveen, A.T. et al. Characterization and localization of the Huntington disease gene product. Hum. Mol. Genet. 2 2069–2073 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Servadio, A. et al. Expression analysis of the ataxin-1 protein in tissues from normal and spinocerebellar ataxia type 1 individuals. Nature Genet. 10, 94–98 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burke, J., Enghild, J., Martin, M. et al. Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH. Nat Med 2, 347–350 (1996). https://doi.org/10.1038/nm0396-347

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0396-347

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing