Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing

Abstract

Alternative splicing has a major role in cardiac adaptive responses, as exemplified by the isoform switch of the sarcomeric protein titin, which adjusts ventricular filling. By positional cloning using a previously characterized rat strain with altered titin mRNA splicing, we identified a loss-of-function mutation in the gene encoding RNA binding motif protein 20 (Rbm20) as the underlying cause of pathological titin isoform expression. The phenotype of Rbm20-deficient rats resembled the pathology seen in individuals with dilated cardiomyopathy caused by RBM20 mutations. Deep sequencing of the human and rat cardiac transcriptome revealed an RBM20-dependent regulation of alternative splicing. In addition to titin (TTN), we identified a set of 30 genes with conserved splicing regulation between humans and rats. This network is enriched for genes that have previously been linked to cardiomyopathy, ion homeostasis and sarcomere biology. Our studies emphasize the key role of post-transcriptional regulation in cardiac function and provide mechanistic insights into the pathogenesis of human heart failure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mapping of the titin splice defect and validation of RBM20 as the affected gene.
Figure 2: Analysis of Rbm20 expression and function.
Figure 3: Signs of cardiomyopathy with arrhythmia and sudden death in Rbm20-deficient rats.
Figure 4: Identification of a novel and functionally relevant RBM20 mutation in an individual with severe cardiomyopathy and arrhythmia.
Figure 5: Characterization of RBM20-dependent isoform expression.
Figure 6: Alignment of orthologous rat and human exons to compare RBM20-dependent isoform expression.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Chen, M. & Manley, J.L. Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nat. Rev. Mol. Cell Biol. 10, 741–754 (2009).

    Article  CAS  Google Scholar 

  2. Lin, S. & Fu, X.-D. SR proteins and related factors in alternative splicing. Adv. Exp. Med. Biol. 623, 107–122 (2007).

    Article  Google Scholar 

  3. Cooper, T.A., Wan, L. & Dreyfuss, G. RNA and disease. Cell 136, 777–793 (2009).

    Article  CAS  Google Scholar 

  4. Lukong, K.E., Chang, K.-wei, Khandjian, E.W. & Richard, S. RNA-binding proteins in human genetic disease. Trends Genet. 24, 416–425 (2008).

    Article  CAS  Google Scholar 

  5. Wang, G.S. & Cooper, T.A. Splicing in disease: disruption of the splicing code and the decoding machinery. Nat. Rev. Genet. 8, 749–761 (2007).

    Article  CAS  Google Scholar 

  6. Gerull, B. et al. Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat. Genet. 30, 201–204 (2002).

    Article  CAS  Google Scholar 

  7. Makarenko, I. et al. Passive stiffness changes caused by upregulation of compliant titin isoforms in human dilated cardiomyopathy hearts. Circ. Res. 95, 708–716 (2004).

    Article  CAS  Google Scholar 

  8. Lahmers, S., Wu, Y., Call, D.R., Labeit, S. & Granzier, H. Developmental control of titin isoform expression and passive stiffness in fetal and neonatal myocardium. Circ. Res. 94, 505–513 (2004).

    Article  CAS  Google Scholar 

  9. Opitz, C.A., Leake, M.C., Makarenko, I., Benes, V. & Linke, W.A. Developmentally regulated switching of titin size alters myofibrillar stiffness in the perinatal heart. Circ. Res. 94, 967–975 (2004).

    Article  CAS  Google Scholar 

  10. Warren, C.M., Krzesinski, P.R., Campbell, K.S., Moss, R.L. & Greaser, M.L. Titin isoform changes in rat myocardium during development. Mech. Dev. 121, 1301–1312 (2004).

    Article  CAS  Google Scholar 

  11. Yamasaki, R. et al. Protein kinase A phosphorylates titin's cardiac-specific N2B domain and reduces passive tension in rat cardiac myocytes. Circ. Res. 90, 1181–1188 (2002).

    Article  CAS  Google Scholar 

  12. Cazorla, O. et al. Differential expression of cardiac titin isoforms and modulation of cellular stiffness. Circ. Res. 86, 59–67 (2000).

    Article  CAS  Google Scholar 

  13. Wu, Y., Peng, J., Campbell, K.B., Labeit, S. & Granzier, H. Hypothyroidism leads to increased collagen-based stiffness and re-expression of large cardiac titin isoforms with high compliance. J. Mol. Cell. Cardiol. 42, 186–195 (2007).

    Article  CAS  Google Scholar 

  14. Krüger, M. et al. Thyroid hormone regulates developmental titin isoform transitions via the phosphatidylinositol-3-kinase/AKT pathway. Circ. Res. 102, 439–447 (2008).

    Article  Google Scholar 

  15. Krüger, M., Babicz, K., von Frieling-Salewsky, M. & Linke, W.A. Insulin signaling regulates cardiac titin properties in heart development and diabetic cardiomyopathy. J. Mol. Cell. Cardiol. 48, 910–916 (2010).

    Article  Google Scholar 

  16. Greaser, M.L. et al. Mutation that dramatically alters rat titin isoform expression and cardiomyocyte passive tension. J. Mol. Cell. Cardiol. 44, 983–991 (2008).

    Article  CAS  Google Scholar 

  17. Brauch, K.M. et al. Mutations in ribonucleic acid binding protein gene cause familial dilated cardiomyopathy. J. Am. Coll. Cardiol. 54, 930–941 (2009).

    Article  CAS  Google Scholar 

  18. Li, D. et al. Identification of novel mutations in RBM20 in patients with dilated cardiomyopathy. Clin. Transl. Sci. 3, 90–97 (2010).

    Article  CAS  Google Scholar 

  19. Greaser, M.L. et al. Developmental changes in rat cardiac titin/connectin: transitions in normal animals and in mutants with a delayed pattern of isoform transition. J. Muscle Res. Cell Motil. 26, 325–332 (2005).

    Article  CAS  Google Scholar 

  20. Gama-Carvalho, M. et al. Targeting of U2AF65 to sites of active splicing in the nucleus. J. Cell Biol. 137, 975–987 (1997).

    Article  CAS  Google Scholar 

  21. Okano, H.J. & Darnell, R.B. A hierarchy of Hu RNA binding proteins in developing and adult neurons. J. Neurosci. 17, 3024–3037 (1997).

    Article  CAS  Google Scholar 

  22. Polydorides, A.D., Okano, H.J., Yang, Y.Y., Stefani, G. & Darnell, R.B. A brain-enriched polypyrimidine tract-binding protein antagonizes the ability of Nova to regulate neuron-specific alternative splicing. Proc. Natl. Acad. Sci. USA 97, 6350–6355 (2000).

    Article  CAS  Google Scholar 

  23. Xu, X. et al. ASF/SF2-regulated CaMKIIdelta alternative splicing temporally reprograms excitation-contraction coupling in cardiac muscle. Cell 120, 59–72 (2005).

    Article  CAS  Google Scholar 

  24. Wang, D., Papp, A.C., Binkley, P.F., Johnson, J.A. & Sadée, W. Highly variable mRNA expression and splicing of L-type voltage-dependent calcium channel α subunit 1C in human heart tissues. Pharmacogenet. Genomics 16, 735–745 (2006).

    Article  CAS  Google Scholar 

  25. Zahler, A.M., Lane, W.S., Stolk, J.A. & Roth, M.B. SR proteins: a conserved family of pre-mRNA splicing factors. Genes Dev. 6, 837–847 (1992).

    Article  CAS  Google Scholar 

  26. Tacke, R. & Manley, J.L. Determinants of SR protein specificity. Curr. Opin. Cell Biol. 11, 358–362 (1999).

    Article  CAS  Google Scholar 

  27. Lin, S., Xiao, R., Sun, P., Xu, X. & Fu, X.-D. Dephosphorylation-dependent sorting of SR splicing factors during mRNP maturation. Mol. Cell 20, 413–425 (2005).

    Article  CAS  Google Scholar 

  28. Zhong, X.-Y., Ding, J.-H., Adams, J.A., Ghosh, G. & Fu, X.-D. Regulation of SR protein phosphorylation and alternative splicing by modulating kinetic interactions of SRPK1 with molecular chaperones. Genes Dev. 23, 482–495 (2009).

    Article  CAS  Google Scholar 

  29. Toko, H. et al. Ca2-almodulin–dependent kinase IIΔ causes heart failure by accumulation of p53 in dilated cardiomyopathy. Circulation 122, 891–899 (2010).

    Article  CAS  Google Scholar 

  30. Cheng, H. et al. Selective deletion of long but not short Cypher isoforms leads to late-onset dilated cardiomyopathy. Hum. Mol. Genet. 20, 1751–1762 (2011).

    Article  CAS  Google Scholar 

  31. Tang, Z.Z. et al. Regulation of the mutually exclusive exons 8a and 8 in the CaV1.2 calcium channel transcript by polypyrimidine tract–binding protein. J. Biol. Chem. 286, 10007–10016 (2011).

    Article  CAS  Google Scholar 

  32. Itoh-Satoh, M. et al. Titin mutations as the molecular basis for dilated cardiomyopathy. Biochem. Biophys. Res. Commun. 291, 385–393 (2002).

    Article  CAS  Google Scholar 

  33. Neagoe, C. et al. Titin isoform switch in ischemic human heart disease. Circulation 106, 1333–1341 (2002).

    Article  Google Scholar 

  34. Williams, L. et al. Titin isoform expression in aortic stenosis. Clin. Sci. 117, 237–242 (2009).

    Article  CAS  Google Scholar 

  35. Chaturvedi, R.R. et al. Passive stiffness of myocardium from congenital heart disease and implications for diastole. Circulation 121, 979–988 (2010).

    Article  Google Scholar 

  36. Ding, J.-H. et al. Dilated cardiomyopathy caused by tissue-specific ablation of SC35 in the heart. EMBO J. 23, 885–896 (2004).

    Article  CAS  Google Scholar 

  37. Feng, Y. et al. SRp38 regulates alternative splicing and is required for Ca2+ handling in the embryonic heart. Dev. Cell 16, 528–538 (2009).

    Article  CAS  Google Scholar 

  38. Wagner, S. et al. Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na+ channels. J. Clin. Invest. 116, 3127–3138 (2006).

    Article  CAS  Google Scholar 

  39. Vatta, M. et al. Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction. J. Am. Coll. Cardiol. 42, 2014–2027 (2003).

    Article  CAS  Google Scholar 

  40. Arimura, T. et al. A Cypher/ZASP mutation associated with dilated cardiomyopathy alters the binding affinity to protein kinase C. J. Biol. Chem. 279, 6746–6752 (2004).

    Article  CAS  Google Scholar 

  41. Arimura, T. et al. Impaired binding of ZASP/Cypher with phosphoglucomutase 1 is associated with dilated cardiomyopathy. Cardiovasc. Res. 83, 80–88 (2009).

    Article  CAS  Google Scholar 

  42. Roger, V.L. et al. Trends in heart failure incidence and survival in a community-based population. J. Am. Med. Assoc. 292, 344–350 (2004).

    Article  CAS  Google Scholar 

  43. Mahon, N.G. et al. Echocardiographic evaluation in asymptomatic relatives of patients with dilated cardiomyopathy reveals preclinical disease. Ann. Intern. Med. 143, 108–115 (2005).

    Article  Google Scholar 

  44. Liew, C.C. & Dzau, V.J. Molecular genetics and genomics of heart failure. Nat. Rev. Genet. 5, 811–825 (2004).

    Article  CAS  Google Scholar 

  45. Matlin, A.J., Clark, F. & Smith, C.W.J. Understanding alternative splicing: towards a cellular code. Nat. Rev. Mol. Cell Biol. 6, 386–398 (2005).

    Article  CAS  Google Scholar 

  46. Saar, K. et al. SNP and haplotype mapping for genetic analysis in the rat. Nat. Genet. 40, 560–566 (2008).

    Article  CAS  Google Scholar 

  47. Hardenbol, P. et al. Multiplexed genotyping with sequence-tagged molecular inversion probes. Nat. Biotechnol. 21, 673–678 (2003).

    Article  CAS  Google Scholar 

  48. Hardenbol, P. et al. Highly multiplexed molecular inversion probe genotyping: over 10,000 targeted SNPs genotyped in a single tube assay. Genome Res. 15, 269–275 (2005).

    Article  CAS  Google Scholar 

  49. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    Google Scholar 

  50. Trapnell, C., Pachter, L. & Salzberg, S.L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).

    Article  CAS  Google Scholar 

  51. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to B. Goldbrich, O. Hummel, S. Lubitz, S. Makino, G. Patone, S. Blachut, R. Plehm, S. Probst, S. Schmidt and M. Wehle for expert technical assistance. R. Hetzer (Deutsches Herzzentrum Berlin) generously provided human cardiac tissue. Mammalian expression vectors for PTBP1 and HuD were gifts from R. Darnell, The Rockefeller University. This work was supported by the US National Institutes of Health grants HL77196 (M.L.G.) and HL075431 (C.A.M.), the Deutsche Forschungsgemeinschaft, Bonn, Germany and the European Research Council grant StG282078 (M.G.), the German Ministry of Science and Education (Nationales Genomforschungsnetz, NGFN-Plus Heart Failure Network) and EURATRANS (HEALTH-F4-2010-241504) (N.H.) and the American Heart Association (P.T.E.).

Author information

Authors and Affiliations

Authors

Contributions

M.L.G., N.H. and M.G. designed the research. W.G., S.S., M.H.R., M.L., T.G., H.M., H.S., S.L., A.M.P., V.D., P.V., S.K., B.G., L.T., V.R.-Z., T.A.H., K.W.S., G.W.D., P.T.E., C.A.M., B.S., R.F., A.P., C.O. and K.S. performed the research. W.G., S.S., M.L.G., H.S., M.H.R., M.L., T.G., H.M., S.L., A.M.P., V.D., P.V., S.K., B.G., L.T., V.R.-Z., T.A.H., K.W.S., G.W.D., P.T.E., C.A.M., B.S., R.F., A.P., C.O., K.S. and M.G. performed data analysis. W.G., T.G., H.M., H.S., S.L., A.M.P., V.D., P.V., S.K., B.G., L.T., V.R.-Z., T.A.H., K.W.S., G.W.D., P.T.E., C.A.M., B.S., R.F., A.P., C.O. and K.S. provided discussion and advice. V.R.-Z., A.P. and C.O. provided patient material. S.S., M.H.R., T.G., H.S. and M.G. performed the bioinformatics analysis. S.S., M.L.G., M.H.R., N.H. and M.G. wrote the paper.

Corresponding author

Correspondence to Michael Gotthardt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11, Supplementary Tables 1–6 and Supplementary Methods (PDF 5285 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, W., Schafer, S., Greaser, M. et al. RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nat Med 18, 766–773 (2012). https://doi.org/10.1038/nm.2693

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2693

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing