Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Expression profiling of medulloblastoma: PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease

A Corrigendum to this article was published on 01 November 2003

Abstract

Little is known about the genetic regulation of medulloblastoma dissemination, but metastatic medulloblastoma is highly associated with poor outcome. We obtained expression profiles of 23 primary medulloblastomas clinically designated as either metastatic (M+) or non-metastatic (M0) and identified 85 genes whose expression differed significantly between classes. Using a class prediction algorithm based on these genes and a leave-one-out approach, we assigned sample class to these tumors (M+ or M0) with 72% accuracy and to four additional independent tumors with 100% accuracy. We also assigned the metastatic medulloblastoma cell line Daoy to the metastatic class. Notably, platelet-derived growth factor receptor α (PDGFRA) and members of the downstream RAS/mitogen-activated protein kinase (MAPK) signal transduction pathway are upregulated in M+ tumors. Immunohistochemical validation on an independent set of tumors shows significant overexpression of PDGFRA in M+ tumors compared to M0 tumors. Using in vitro assays, we show that platelet-derived growth factor α (PDGFA) enhances medulloblastoma migration and increases downstream MAP2K1 (MEK1), MAP2K2 (MEK2), MAPK1 (p42 MAPK) and MAPK3 (p44 MAPK) phosphorylation in a dose-dependent manner. Neutralizing antibodies to PDGFRA blocks MAP2K1, MAP2K2 and MAPK1/3 phosphorylation, whereas U0126, a highly specific inhibitor of MAP2K1 and MAP2K2, also blocks MAPK1/3. Both inhibit migration and prevent PDGFA-stimulated migration. These results provide the first insight into the genetic regulation of medulloblastoma metastasis and are the first to suggest a role for PDGFRA and the RAS/MAPK signaling pathway in medulloblastoma metastasis. Inhibitors of PDGFRA and RAS proteins should therefore be considered for investigation as possible novel therapeutic strategies against medulloblastoma.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genes differentiating metastatic from non-metastatic tumors in 23 individual arrays.
Figure 2: Classification and prediction strengths of non-metastatic tumors (♦), metastatic tumors (), non-metastatic validation tumors (▪), and medulloblastoma cell lines ().
Figure 3: Protein expression is consistent with microarray results.
Figure 4: PDGFRA promotes medulloblastoma cell adhesion.
Figure 5: PDGFRA promotes medulloblastoma cell chemotaxis.
Figure 6: PDGFRA-blocking antibody inhibits activation of MAPK pathway members.
Figure 7: Schema of PDGFRA activation of the RAS/MAPK pathway.

Similar content being viewed by others

References

  1. Packer, R.J. Childhood medulloblastoma: progress and future challenges. Brain Dev. 21, 75–81 (1999).

    Article  CAS  Google Scholar 

  2. Packer, R.J. Brain tumors in children. Arch. Neurol. 56, 421–425 (1999).

    Article  CAS  Google Scholar 

  3. Zeltzer, P.M. et al. Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: conclusions from the Children's Cancer Group 921 randomized phase III study. J. Clin. Oncol. 17, 832–845 (1999).

    Article  CAS  Google Scholar 

  4. Grotzer, M.A. et al. TrkC expression predicts good clinical outcome in primitive neuroectodermal brain tumors. J. Clin. Oncol 18, 1027–1035 (2000).

    Article  CAS  Google Scholar 

  5. Kim, J.Y. et al. Activation of neurotrophin-3 receptor TrkC induces apoptosis in medulloblastomas. Cancer Res. 59, 711–719 (1999).

    CAS  Google Scholar 

  6. Herms, J. et al. C-MYC expression in medulloblastoma and its prognostic value. Int. J. Cancer 89, 395–402 (2000).

    Article  CAS  Google Scholar 

  7. Biegel, J.A. et al. Prognostic significance of chromosome 17p deletions in childhood primitive neuroectodermal tumors (medulloblastomas) of the central nervous system. Clin. Cancer Res. 3, 473–478 (1997).

    CAS  Google Scholar 

  8. Batra, S.K. et al. Prognostic implications of chromosome 17p deletions in human medulloblastomas. J. Neurooncol. 24, 39–45 (1995).

    Article  CAS  Google Scholar 

  9. Emadian, S.M., McDonald, J.D., Gerken, S.C. & Fults, D. Correlation of chromosome 17p loss with clinical outcome in medulloblastoma. Clin. Cancer Res. 2, 1559–1564 (1996).

    CAS  Google Scholar 

  10. Golub, T.R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999).

    Article  CAS  Google Scholar 

  11. Bittner, M. et al. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406, 536–540 (2000).

    Article  CAS  Google Scholar 

  12. Packer, R.J. et al. Treatment of children with medulloblastomas with reduced-dose craniospinal radiation therapy and adjuvant chemotherapy: A Children's Cancer Group Study. J. Clin. Oncol. 17, 2127–2136 (1999).

    Article  CAS  Google Scholar 

  13. Brown, H.G. et al. “Large cell/anaplastic” medulloblastomas: a Pediatric Oncology Group Study. J. Neuropathol. Exp. Neurol. 59, 857–865 (2000).

    Article  CAS  Google Scholar 

  14. Adesina, A.M. Molecular heterogeneity in medulloblastoma with implications for differing tumor biology. J. Child Neurol. 14, 411–417 (1999).

    Article  CAS  Google Scholar 

  15. Podust, V.N., Tiwari, N., Stephan, S. & Fanning, E. Replication factor C disengages from proliferating cell nuclear antigen (PCNA) upon sliding clamp formation, and PCNA itself tethers DNA polymerase delta to DNA. J. Biol. Chem. 273, 31992–31999 (1998).

    Article  CAS  Google Scholar 

  16. Yuzhakov, A., Kelman, Z., Hurwitz, J. & O'Donnell, M. Multiple competition reactions for RPA order the assembly of the DNA polymerase delta holoenzyme. EMBO J. 18, 6189–6199 (1999).

    Article  CAS  Google Scholar 

  17. Clark, E.A., Golub, T.R., Lander, E.S. & Hynes, R.O. Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406, 532–535 (2000).

    Article  CAS  Google Scholar 

  18. Kjoller, L. & Hall, A. Rac Mediates Cytoskeletal Rearrangements and Increased Cell Motility Induced by Urokinase-type Plasminogen Activator Receptor Binding to Vitronectin. J. Cell Biol. 152, 1145–1158 (2001).

    Article  CAS  Google Scholar 

  19. Sunshine, C., Francis, S. & Kirk, K.L. Rab3B regulates ZO-1 targeting and actin organization in PC12 neuroendocrine cells. Exp. Cell Res. 257, 1–10 (2000).

    Article  CAS  Google Scholar 

  20. Genda, D., Sakamoto, M., Ichida, T., Asakura, H. & Hirohashi, S. Loss of cell-cell contact is induced by integrin-mediated cell-substratum adhesion in highly-motile and highly-metastatic hepatocellular carcinoma cells. Lab. Invest. 80, 387–394 (2000).

    Article  CAS  Google Scholar 

  21. Yi, M. & Ruoslahti, E. A fibronectin fragment inhibits tumor growth, angiogenesis, and metastasis. Proc. Natl Acad. Sci. USA 98, 620–624 (2001).

    Article  CAS  Google Scholar 

  22. Felding-Haberman, B. et al. Integrin activation controls metastasis in human breast cancer. Proc. Natl Acad. Sci. USA 98, 1853–1858 (2001).

    Article  Google Scholar 

  23. Thomas, R., True, L.D., Bassuk, J.A., Lange, P.H. & Vessella, R.L. Differential expression of osteonectin/SPARC during human prostate cancer progression. Clin. Cancer Res. 6, 1140–1149 (2000).

    CAS  Google Scholar 

  24. Remacle, A. et al. High levels of TIMP-2 correlate with adverse prognosis in breast cancer. Int. J. Cancer 89, 118–121 (2000).

    Article  CAS  Google Scholar 

  25. McCarthy, M.J., Crowther, M., Bell, P.R. & Brindle, N.P. The endothelial receptor tyrosine kinase tie-1 is upregulated by hypoxia and vascular endothelial growth factor. FEBS Lett. 423, 334–338 (1998).

    Article  CAS  Google Scholar 

  26. Cillo, C., Cantile, M., Mortarini, R., Barba, P., Parmiani, P. & Anichini, A. Differential patterns of HOX gene expression are associated with specific integrin and ICAM profiles in clonal populations isolated from a single human melanoma metastasis. Int. J. Cancer 66, 692–697 (1996).

    Article  CAS  Google Scholar 

  27. Garson, J.A., Pemberton, L.F., Sheppard, P.W., Varndell, I.M., Coakham, H.B. & Kemshead, J.T. N-myc gene expression and oncoprotein characterisation in medulloblastoma. Br. J. Cancer 59, 889–894 (1989).

    Article  CAS  Google Scholar 

  28. Zurawel, R.H. et al. Analysis of PTCH/SMO/SHH pathway genes in medulloblastoma. Genes Chromosom. Cancer 27, 44–51 (2000).

    Article  CAS  Google Scholar 

  29. Gilbertson, R.J., Pearson, A.D., Perry, R.H., Jaros, E. & Kelly, P.J. Prognostic significance of the c-erbB-2 oncogene product in childhood medulloblastoma. Br. J. Cancer. 71, 473–477 (1995).

    Article  CAS  Google Scholar 

  30. Huang, H., Colella, S., Kurrer, M., Yonekawa, Y., Kleihues, P. & Ohgaki, H. Gene expression profiling of low-grade diffuse astrocytomas by cDNA arrays. Cancer Res. 60, 6868–6874 (2000).

    CAS  PubMed Central  Google Scholar 

  31. Markert, J.M. et al. Differential gene expression profiling in human brain tumors. Physiol. Genomics 5, 21–33 (2001).

    Article  CAS  Google Scholar 

  32. Ellison, J.A. & de Vellis, J. Platelet-derived growth factor is expressed by cells in the early oligodendrocyte lineage. J. Neurosci. Res. 37, 116–128 (1994).

    Article  CAS  Google Scholar 

  33. Yu, J., Deuel, T.F. & Kim, H.R. Platelet-derived growth factor (PDGF) receptor-alpha activates c-Jun NH2-terminal kinase-1 and antagonizes PDGF receptor-beta-induced phenotypic transformation. J. Biol. Chem. 275, 19076–19082 (2000).

    Article  CAS  Google Scholar 

  34. Sieg, D.J. et al. FAK integrates growth-factor and integrin signals to promote cell migration. Nature Cell Biol. 2, 249–256 (2000).

    Article  CAS  Google Scholar 

  35. Yao, R., Yoshihara, M. & Osada, H. Specific activation of a c-Jun NH2-terminal kinase isoform and induction of neurite outgrowth in PC-12 cells by staurosporine. J. Biol. Chem. 272, 18261–18266 (1997).

    Article  CAS  Google Scholar 

  36. Khan, J., Bittner, M., Chen, Y., Meltzer, P. & Trent, J.T. DNA microarray technology: the anticipated impact on the study of human disease. Biochim. Biophys. Acta. 1423, 17–28 (1999).

    Google Scholar 

  37. Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863–14868 (1998).

    Article  CAS  Google Scholar 

  38. Ben-Dor, A., Friedman, N. & Yakhini, Z. Scoring Genes for Relevence. Report No. AGL-2000-12 (Agilent Labs, Palo Alto, California, 2000).

    Google Scholar 

Download references

Acknowledgements

This research was supported in part by the Children's Brain Tumor Foundation (T.J.M.) as well as an Avery Research Scholarship (T.J.M.) and Child Health Research Career Development Award (T.J.M.) from the Children's Research Institute of the Children's Hospital National Medical Center. The authors thank A. Butte, P. Tamayo, E. Hoffman, D. Dressman, J. Natale and Y. Liu for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tobey J. MacDonald or Dietrich A. Stephan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacDonald, T., Brown, K., LaFleur, B. et al. Expression profiling of medulloblastoma: PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease. Nat Genet 29, 143–152 (2001). https://doi.org/10.1038/ng731

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng731

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing