Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Calcium oxalate urolithiasis in mice lacking anion transporter Slc26a6

Abstract

Urolithiasis is one of the most common urologic diseases in industrialized societies. Calcium oxalate is the predominant component in 70–80% of kidney stones1, and small changes in urinary oxalate concentration affect the risk of stone formation2. SLC26A6 is an anion exchanger expressed on the apical membrane in many epithelial tissues, including kidney and intestine3,4,5,6. Among its transport activities, SLC26A6 mediates Cl−-oxalate exchange5,6,7,8,9. Here we show that mutant mice lacking Slc26a6 develop a high incidence of calcium oxalate urolithiasis. Slc26a6-null mice have significant hyperoxaluria and elevation in plasma oxalate concentration that is greatly attenuated by dietary oxalate restriction. In vitro flux studies indicated that mice lacking Slc26a6 have a defect in intestinal oxalate secretion resulting in enhanced net absorption of oxalate. We conclude that the anion exchanger SLC26A6 has a major constitutive role in limiting net intestinal absorption of oxalate, thereby preventing hyperoxaluria and calcium oxalate urolithiasis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeted disruption of the Slc26a6 gene.
Figure 2: Transport activities in renal brush border membrane vesicles from wild-type and Slc26a6-null mice.
Figure 3: Urolithiasis phenotype in Slc26a6-null mice.
Figure 4: Abnormal oxalate homeostasis in Slc26a6-null mice.

Similar content being viewed by others

References

  1. Asplin, J.R. Hyperoxaluric calcium nephrolithiasis. Endocrinol. Metab. Clin. North Am. 31, 927–949 (2002).

    Article  CAS  Google Scholar 

  2. Robertson, W.G. & Peacock, M. The cause of idiopathic calcium stone disease: hypercalciuria or hyperoxaluria? Nephron 26, 105–110 (1980).

    Article  CAS  Google Scholar 

  3. Waldegger, S. et al. Cloning and characterization of SLC26A6, a novel member of the solute carrier 26 gene family. Genomics 72, 43–50 (2001).

    Article  CAS  Google Scholar 

  4. Lohi, H. et al. Mapping of five new putative anion transporter genes in human and characterization of SLC26A6, a candidate gene for pancreatic anion exchanger. Genomics 70, 102–112 (2000).

    Article  CAS  Google Scholar 

  5. Knauf, F. et al. Identification of a chloride-formate exchanger expressed on the brush border membrane of renal proximal tubule cells. Proc. Natl. Acad. Sci. USA 98, 9425–9430 (2001).

    Article  CAS  Google Scholar 

  6. Wang, Z., Petrovic, S., Mann, E. & Soleimani, M. Identification of an apical Cl−/HCO3− exchanger in the small intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 282, G573–G579 (2002).

    Article  CAS  Google Scholar 

  7. Jiang, Z., Grichtchenko, I.I., Boron, W.F. & Aronson, P.S. Specificity of anion exchange mediated by mouse Slc26a6. J. Biol. Chem. 277, 33963–33967 (2002).

    Article  CAS  Google Scholar 

  8. Xie, Q., Welch, R., Mercado, A., Romero, M.F. & Mount, D.B. Molecular characterization of the murine Slc26a6 anion exchanger: functional comparison with Slc26a1. Am. J. Physiol. Renal Physiol. 283, F826–F838 (2002).

    Article  Google Scholar 

  9. Chernova, M.N. et al. Functional comparison of mouse Slc26a6 anion exchanger with human SLC26A6 polypeptide variants: differences in anion selectivity, regulation, and electrogenicity. J. Biol. Chem. 280, 8564–8580 (2005).

    Article  CAS  Google Scholar 

  10. Wang, Z. et al. Renal and intestinal transport defects in Slc26a6-null mice. Am. J. Physiol. Cell Physiol. 288, C957–C965 (2005).

    Article  CAS  Google Scholar 

  11. Werness, P.G., Brown, C.M., Smith, L.H. & Finlayson, B. EQUIL2: a BASIC computer program for the calculation of urinary saturation. J. Urol. 134, 1242–1244 (1985).

    Article  CAS  Google Scholar 

  12. Asplin, J. et al. Supersaturation and stone composition in a network of dispersed treatment sites. J. Urol. 159, 1821–1825 (1998).

    Article  CAS  Google Scholar 

  13. Wang, T., Giebisch, G. & Aronson, P.S. Effects of formate and oxalate on volume absorption in rat proximal tubule. Am. J. Physiol. 263, F37–F42 (1992).

    CAS  PubMed  Google Scholar 

  14. Wang, T., Segal, A.S., Giebisch, G. & Aronson, P.S. Stimulation of chloride transport by cAMP in rat proximal tubules. Am. J. Physiol. 268, F204–F210 (1995).

    CAS  PubMed  Google Scholar 

  15. Wang, T., Egbert, A.L. Jr., Abbiati, T., Aronson, P.S. & Giebisch, G. Mechanisms of stimulation of proximal tubule chloride transport by formate and oxalate. Am. J. Physiol. 271, F446–F450 (1996).

    CAS  PubMed  Google Scholar 

  16. Holmes, R.P., Ambrosius, W.T. & Assimos, D.G. Dietary oxalate loads and renal oxalate handling. J. Urol. 174, 943–947 (2005).

    Article  CAS  Google Scholar 

  17. Hatch, M., Freel, R.W. & Vaziri, N.D. Intestinal excretion of oxalate in chronic renal failure. J. Am. Soc. Nephrol. 5, 1339–1343 (1994).

    CAS  PubMed  Google Scholar 

  18. Holmes, R.P. & Assimos, D.G. The impact of dietary oxalate on kidney stone formation. Urol. Res. 32, 311–316 (2004).

    Article  CAS  Google Scholar 

  19. Kuo, S.M. & Aronson, P.S. Pathways for oxalate transport in rabbit renal microvillus membrane vesicles. J. Biol. Chem. 271, 15491–15497 (1996).

    Article  CAS  Google Scholar 

  20. Freel, R.W., Hatch, M., Green, M. & Soleimani, M. Ileal oxalate absorption and urinary oxalate excretion are enhanced in Slc26a6-null mice. Am. J. Physiol. Gastrointest. Liver Physiol. advanced online publication 22 December 2005 (10.1152/ajpgi.00481.2005).

  21. Deng, C., Wynshaw-Boris, A., Zhou, F., Kuo, A. & Leder, P. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 84, 911–921 (1996).

    Article  CAS  Google Scholar 

  22. Kocinsky, H.S. et al. Use of phospho-specific antibodies to determine the phosphorylation of endogenous Na+/H+ exchanger NHE3 at PKA consensus sites. Am. J. Physiol. Renal Physiol. 289, F249–F258 (2005).

    Article  CAS  Google Scholar 

  23. Karniski, L.P. et al. Formate-stimulated NaCl absorption in the proximal tubule is independent of the pendrin protein. Am. J. Physiol. Renal Physiol. 283, F952–F956 (2002).

    Article  Google Scholar 

  24. McConnell, K.R. & Aronson, P.S. Effects of inhibitors on anion exchangers in rabbit renal brush border membrane vesicles. J. Biol. Chem. 269, 21489–21494 (1994).

    CAS  PubMed  Google Scholar 

  25. Wu, M.S., Biemesderfer, D., Giebisch, G. & Aronson, P.S. Role of NHE3 in mediating renal brush border Na+-H+ exchange. Adaptation to metabolic acidosis. J. Biol. Chem. 271, 32749–32752 (1996).

    Article  CAS  Google Scholar 

  26. Yasue, T. Histochemical identification of calcium oxalate. Acta Histochem. et Cytochem. 2, 83–95 (1969).

    Article  CAS  Google Scholar 

  27. Hoppe, B., Kemper, M.J., Hvizd, M.G., Sailer, D.E. & Langman, C.B. Simultaneous determination of oxalate, citrate and sulfate in children's plasma with ion chromatography. Kidney Int. 53, 1348–1352 (1998).

    Article  CAS  Google Scholar 

  28. Palgi, N., Vatnick, I. & Pinshow, B. Oxalate, calcium and ash intake and excretion balances in fat sand rats (Psammomys obesus) feeding on two different diets. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 141, 48–53 (2005).

    Article  Google Scholar 

  29. Vidyasagar, S., Rajendran, V.M. & Binder, H.J. Three distinct mechanisms of HCO3− secretion in rat distal colon. Am. J. Physiol. Cell Physiol. 287, C612–C621 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grants DK33793, DK17433, DK56788 and DK60699.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Z., Asplin, J., Evan, A. et al. Calcium oxalate urolithiasis in mice lacking anion transporter Slc26a6. Nat Genet 38, 474–478 (2006). https://doi.org/10.1038/ng1762

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1762

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing