Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans

Abstract

The functional interaction of BAFF and APRIL with TNF receptor superfamily members BAFFR, TACI and BCMA is crucial for development and maintenance of humoral immunity in mice and humans. Using a candidate gene approach, we identified homozygous and heterozygous mutations in TNFRSF13B, encoding TACI, in 13 individuals with common variable immunodeficiency. Homozygosity with respect to mutations causing the amino acid substitutions S144X and C104R abrogated APRIL binding and resulted in loss of TACI function, as evidenced by impaired proliferative response to IgM-APRIL costimulation and defective class switch recombination induced by IL-10 and APRIL or BAFF. Family members heterozygous with respect to the C104R mutation and individuals with sporadic common variable immunodeficiency who were heterozygous with respect to the amino acid substitutions A181E, S194X and R202H had humoral immunodeficiency. Although signs of autoimmunity and lymphoproliferation are evident, the human phenotype differs from that of the Tnfrsf13b−/− mouse model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TACI mutations in CVID.
Figure 2: TACI deficiency impairs APRIL binding.
Figure 3: Proliferation and CSR in response to APRIL and BAFF.
Figure 4: B-cell subpopulations and Ig levels in TACI deficiency.
Figure 5: Tissue sections of a tonsil from an individual with TACI deficiency (a,c,e,g,i) compared with a normal control (b,d,f,h,j).

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Mackay, F. & Ambrose, C. The TNF family members BAFF and APRIL: the growing complexity. Cytokine Growth Factor Rev. 14, 311–324 (2003).

    Article  CAS  Google Scholar 

  2. Mackay, F., Schneider, P., Rennert, P. & Browning, J. BAFF AND APRIL: a tutorial on B cell survival. Annu. Rev. Immunol. 21, 231–264 (2003).

    Article  CAS  Google Scholar 

  3. Ng, L.G. et al. B cell-activating factor belonging to the TNF family (BAFF)-R is the principal BAFF receptor facilitating BAFF costimulation of circulating T and B cells. J. Immunol. 173, 807–817 (2004).

    Article  CAS  Google Scholar 

  4. Avery, D. et al. BAFF selectively enhances the survival of plasmablasts generated from activated human memory B cells. J. Clin. Invest. 112, 286–297 (2003).

    Article  CAS  Google Scholar 

  5. Wu, Y. et al. Tumor necrosis factor (TNF) receptor superfamily member TACI is a high affinity receptor for TNF family members APRIL and BlyS 275. J. Biol. Chem. 275, 35478–35485 (2000).

    Article  CAS  Google Scholar 

  6. Varfolomeev, E. et al. APRIL-deficient mice have normal immune system development. Mol. Cell. Biol. 24, 997–1006 (2004).

    Article  CAS  Google Scholar 

  7. Castigli, E. et al. Impaired IgA class switching in APRIL-deficient mice. Proc. Natl. Acad. Sci. USA 101, 3903–3908 (2004).

    Article  CAS  Google Scholar 

  8. Litinskiy, M.B. et al. DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat. Immunol. 3, 822–829 (2002).

    Article  CAS  Google Scholar 

  9. Castigli, E. et al. TACI and BAFF-R mediate isotype switching in B cells. J. Exp. Med. 201, 35–39 (2005).

    Article  CAS  Google Scholar 

  10. Schiemann, B. et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science 293, 2111–2114 (2001).

    Article  CAS  Google Scholar 

  11. Thompson, J.S. et al. BAFF-R a newly identified TNF receptor that specifically interacts with BAFF. Science 293, 2108–2111 (2001).

    Article  CAS  Google Scholar 

  12. Shulga-Morskaya, S. et al. B cell-activating factor belonging to the TNF family acts through separate receptors to support B cell survival and T cell-independent antibody formation. J. Immunol. 173, 2331–2341 (2004).

    Article  CAS  Google Scholar 

  13. von Bülow, G.U., van Deursen, J.M. & Bram, R.J. Regulation of the T-independent humoral response by TACI. Immunity 14, 573–582 (2001).

    Article  Google Scholar 

  14. Seshasayee, D. et al. Loss of TACI causes fatal lymphoproliferation and autoimmunity, establishing TACI as an inhibitory BLyS receptor. Immunity 18, 279–288 (2003).

    Article  CAS  Google Scholar 

  15. Yan, M. et al. Activation and accumulation of B cells in TACI-deficient mice. Nat. Immunol. 2, 638–643 (2001).

    Article  CAS  Google Scholar 

  16. Cunningham-Rundles, C. & Bodian, C. Common variable immunodeficiency: clinical and immunological features of 248 patients. Clin. Immunol. 92, 34–48 (1999).

    Article  CAS  Google Scholar 

  17. Vořechovský, I., Cullen, M., Carrington, M., Hammarström, L. & Webster, A.D.B. Fine mapping of IGAD1 in IgA deficiency and common variable immunodeficiency: Identification and characterization of haplotypes shared by affected members of 101 multiple-case families. J. Immunol. 164, 4408–4416 (2000).

    Article  Google Scholar 

  18. Burrows, P.D. & Cooper, M.D. IgA deficiency. Adv. Immunol. 65, 245–276 (1997).

    Article  CAS  Google Scholar 

  19. Grimbacher, B. et al. Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nat. Immunol. 4, 261–268 (2003).

    Article  CAS  Google Scholar 

  20. Salzer, U. et al. ICOS deficiency in patients with common variable immuno-deficiency. Clin. Immunol. 113, 234–240 (2004).

    Article  CAS  Google Scholar 

  21. Hymowitz, S.G. et al. Structures of APRIL-receptor complexes: Like BCMA, TACI employs only a single cysteine-rich domain for high-affinity ligand binding. J. Biol. Chem. 280, 7218–7227 (2004).

    Article  Google Scholar 

  22. Riva, A. & Kohane, I.S. SNPper: retrieval and analysis of human SNPs. Bioinformatics 18, 1681–1685 (2002).

    Article  CAS  Google Scholar 

  23. Ng, P.C. & Henikoff, S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 31, 3812–3814 (2003).

    Article  CAS  Google Scholar 

  24. Ingold, K. et al. Identification of proteoglycans as APRIL-specific binding partners. J. Exp. Med. 201, 1375–1383 (2005).

    Article  CAS  Google Scholar 

  25. Warnatz, K. et al. Severe deficiency of switched memory B cells (CD27+IgMIgD) in subgroups of patients with common variable immunodeficiency: a new approach to classify a heterogeneous disease. Blood 99, 1544–1551 (2002).

    Article  CAS  Google Scholar 

  26. Kralovicova, J., Hammarström, L., Plebani, A., Webster, A.D.B. & Vorechovsky, I. Fine-scale mapping at IGAD1 and genome-wide genetic linkage analysis implicate HLA-DQ/DR as a major susceptibility locus in selective IgA deficiency and common variable immunodeficiency. J. Immunol. 170, 2765–2775 (2003).

    Article  CAS  Google Scholar 

  27. McDermott, M.F. et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 97, 133–144 (1999).

    Article  CAS  Google Scholar 

  28. Ferrari, S. et al. Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper IgM. Proc. Natl. Acad. Sci. USA 98, 12614–12619 (2001).

    Article  CAS  Google Scholar 

  29. Rieux-Laucat, F. et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 268, 1347–1349 (1995).

    Article  CAS  Google Scholar 

  30. Infante, A.J. et al. The clinical spectrum in a large kindred with autoimmune lymphoproliferative syndrome caused by a Fas mutation that impairs lymphocyte apoptosis. J. Pediatr. 133, 629–633 (1998).

    Article  CAS  Google Scholar 

  31. Fisher, G.H. et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81, 935–946 (1995).

    Article  CAS  Google Scholar 

  32. Holler, N. et al. Two adjacent trimeric Fas ligands are required for Fas signaling and formation of a death-inducing signaling complex. Mol. Cell. Biol. 23, 1428–1440 (2003).

    Article  CAS  Google Scholar 

  33. Wu, H. Assembly of post-receptor signaling complexes for the tumor necrosis factor receptor superfamily. Adv. Protein Chem. 68, 225–279 (2004).

    Article  CAS  Google Scholar 

  34. Xia, X.Z. et al. TACI is a TRAF-interacting receptor for TALL-1, a tumor necrosis factor family member involved in B cell regulation. J. Exp. Med. 192, 137–143 (2000).

    Article  CAS  Google Scholar 

  35. Siegel, R.M. et al. Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science 288, 2354–2357 (2000).

    Article  CAS  Google Scholar 

  36. Gross, J.A. et al. TACI-Ig neutralizes molecules critical for B cell development and autoimmune disease. Impaired B cell maturation in mice lacking BLyS. Immunity 15, 289–302 (2001).

    Article  CAS  Google Scholar 

  37. Baker, K.P. et al. Generation and characterization of LymphoStat-B, a human monoclonal antibody that anatgonizes the bioactivities of B Lymphocyte Stimulator. Arthritis Rheum. 48, 3253–3265 (2003).

    Article  CAS  Google Scholar 

  38. Hannelius, U. et al. Phenylketonuria screening registry as a resource for population genetic studies. J. Med. Genet. (in the press).

  39. Pan, Q., Lindersson, Y., Sideras, P. & Hammarström, L. Structural analysis of human γ3 intervening regions and switch regions: implication for the low frequency of switching in IgG3-deficient patients. Eur. J. Immunol. 27, 2920–2926 (1997).

    Article  CAS  Google Scholar 

  40. Lathrop, G.M., Lalouel, J.M., Julier, C. & Ott, J. Strategies for multilocus analysis in humans. Proc. Natl. Acad. Sci. USA 81, 3443–3446 (1984).

    Article  CAS  Google Scholar 

  41. Cottingham, R.W. Jr ., Idury, R.M. & Schäffer, A.A. Faster sequential genetic linkage computations. Am. J. Hum. Genet. 53, 252–263 (1993).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank H. Eibel and K. Warnatz for advice; J. Deimel, R. Dräger, B. Ferry, M. Ibrahim, K. Ingold, J. Pfannstiel, A. Rump, A. Tardivel, M. Vogel, S. Workman and C. Woellner for assistance; A.-M. Eades-Perner, J. Puck and U. Walker for critically reading the manuscript; U. Hannelius and J. Kere for sharing their material and method for population-based screening; E. Walther for providing the tonsil specimens; and I. Vořechovský for providing the genotypes of CVID families. This research was supported by grants from the Deutsche Forschungsgemeinschaft, the Swedish research council and the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Grimbacher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Expression of TACI and BAFFR. (PDF 35 kb)

Supplementary Fig. 2

ELISA for detection of soluble TACI. (PDF 11 kb)

Supplementary Fig. 3

Proliferation of enriched B cells in response to anti-IgM, anti-IgM plus interleukin (IL)-2, snti-CD40, and anti-CD40 plus IL-4. (PDF 11 kb)

Supplementary Table 1

Clinical summary of patients with mutations in TNFRSF13B. (PDF 14 kb)

Supplementary Table 2

Primer sequences used in this study. (PDF 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salzer, U., Chapel, H., Webster, A. et al. Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans. Nat Genet 37, 820–828 (2005). https://doi.org/10.1038/ng1600

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1600

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing