Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Homozygosity mapping of Hallervorden–Spatz syndrome to chromosome 20p12.3–p13

A Correction to this article was published on 01 May 1997

Abstract

Hallervorden-Spatz syndrome (HSS) (OMIM #234200) is a rare, autosomal recessive neurodegenerative disorder with brain iron accumulation as a prominent finding. Clinical features include extrapyramidal dysfunction, onset in childhood, and a relentlessly progressive course1. Histologic study reveals massive iron deposits in the basal ganglia. Systemic and cerebrospinal fluid iron levels are normal, as are plasma levels of ferritin, transferrin and ceruloplasmin. Conversely, in disorders of systemic iron overload, such as haemochromatosis, brain iron is not increased, which suggests that fundamental differences exist between brain and systemic iron metabolism and transport. In normal brain, non-haem iron accumulates regionally and is highest in basal ganglia2. Pathologic brain iron accumulation is seen in common disorders, including Parkinson's disease3,4, Alzheimer's disease5,6 and Huntington disease7. In order to gain insight into normal and abnormal brain iron transport, metabolism and function, our approach was to map the gene for HSS. A primary genome scan was performed using samples from a large, consanguineous family (HS1) (see Fig. 1). While this family was immensely powerful for mapping, the region demonstrating homozygosity in all affected members spans only 4 cM, requiring very close markers in order to detect linkage. The HSS gene maps to an interval flanked by D20S906 and D20S116 on chromosome 20p12.3–p13. Linkage was confirmed in nine additional families of diverse ethnic backgrounds.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dooling, E.C., Schoene, W.C. & Richardson, E.P. Jr., Hallervorden-Spatz syndrome. Arch. Neurol. 30, 70–83 (1974).

    Article  CAS  PubMed  Google Scholar 

  2. Hill, J.M. & Switzer, R.C. The regional distribution and cellular localization of iron in the rat brain. Neuroscience 11, 595–603 (1984).

    Article  CAS  PubMed  Google Scholar 

  3. Sofic, E. et al. Increased iron III and total iron content in postmortem substantia nigra in parkinsonian brain. J. Neural Transmission 74, 199–205 (1988).

    Article  CAS  Google Scholar 

  4. Riederer, P. et al. Transition metals, ferritin, glutathione and ascorbic acid in parkinsonian brains. J. Neurochem. 52, 515–520 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Connor, J.R., Snyder, B.S., Beard, J.L., Fine, R.E. & Mufson, E.J. Regional distribution of iron and iron regulatory proteins in the brain in aging and Alzheimer's disease. J. Neurosci. Res. 31, 327–335 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Dedman, D.T. et al. Iron and aluminum in relation to brain ferritin in normal individuals and Alzheimer's disease and chronic renal-dialysis patients. Biochem. J. 287, 509–514 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dexter, D.T. et al. Alterations in the levels of iron, ferritin and other trace metals in Parkinson's disease and other neurodegenerative diseases affecting basal ganglia. Brain 114, 1953–1975 (1991).

    Article  PubMed  Google Scholar 

  8. Lander, E.S. & Botstein, D. Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children. Science 236, 1567–1570 (1987).

    Article  CAS  PubMed  Google Scholar 

  9. Kwitek-Black, A.E. et al. Linkage of Bardet-Biedl syndrome to chromosome 16q and evidence for non-allelic genetic heterogeneity. Nature Genet. 5, 392–396 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Aksentijevich, I. et al. Refined mapping of the gene causing familial Mediterranean fever, by linkage and homozygosity studies. Am. J. Hum. Genet. 53, 451–61 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ben Hamida, C. et al. Localization of Friedreich ataxia phenotype with selective vitamin E deficiency to chromosome 8q by homozygosity mapping. Nature Genet. 5, 195–200 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Puffenberger, E.G. et al. Identity-by-descent and association mapping of a recessive gene for Hirschsprung disease on human chromosome 13q22. Hum. Mol. Genet. 3, 1217–1225 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Hill, J.M. Iron concentration reduced in ventral pallidum, globus pallidus, and substantia nigra by GABA-transaminase inhibitor, gamma-vinyl GABA. Brain Res. 342, 18–25 (1985).

    Article  CAS  PubMed  Google Scholar 

  14. Schaffer, A.A. Faster linkage analysis computations for pedigrees with loops or unused alleles. Hum. Hered. 46 (4), 226–235 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Yang-Feng, T.L., Han, H., Lomasney, J.W. & Caron, M.G. Localization of the cDNA for an alpha1-adrenergic receptor subtype (ADRA1D) to chromosome band 20p13. Cytogenet. Cell Genet. 66, 170–171 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Wunderle, V. et al. The EUROGEM map of human chromosome 20. Euro. J. Hum. Genet. 2, 242–243 (1994).

    CAS  Google Scholar 

  17. Litt, M. et al. Chromosomal localization of the human proenkephalin and prodynorphin genes. Am. J. Hum. Genet. 42, 327–334 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Alvarez, R.A. et al. cDNA sequence and gene locus of the human retinal phosphoinositide-specific phospholipase-Cfl4 (PLCB4). Genomics 29, 53–61 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Shevell, M. Racial hygiene, active euthanasia, and Julius Hallervorden. Neurology 42, 2214–2219 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Gordon, J., Julius Hallervorden. Neurology 43, 1452 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Swaiman, K.F. Hallervorden-Spatz syndrome and brain iron metabolism. Arch. Neurol. 48, 1285–1293 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Litt, M. & Luty, J. A hypervariable microsatellite revealed by In vitro amplifications of a dinucleotide repeat within the cardiac muscle actin gene. Am. J. Hum. Genet. 44, 397–401 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Edwards, A., Civltello, A., Hammond, H. & Caskey, C. cDNA typing and genetic mapping with trimeric and tetrameric repeats. Am. J. Hum. Genet. 49, 746–756 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Litt, M., Hauge, X. & Sharma, V. Shadow bands seen when typing polymorphic dinucleotide repeats: some causes and cures. Biotechnlques 15, 280–284 (1993).

    CAS  Google Scholar 

  25. Lathrop, G., Lalouel, J., Julier, C. & Ott, J. Strategies for multitocus linkage analysis in humans. Proc. Nat. Acad. Sci. USA 381, 3443–3446 (1984).

    Article  Google Scholar 

  26. Cottingham, J., R.W., Idury, R.M. & Schaffer, A.A. Faster sequential genetic linkage computations. Am. J. Hum. Genet. 53, 252–263 (1993).

    PubMed  PubMed Central  Google Scholar 

  27. Schaffer, A.A., Gupta, S.K., Shriram, K. & Cottingham, R.W. Jr., Avoiding recomputation in linkage analysis. Hum. Genet. 44, 225–237 (1994).

    CAS  Google Scholar 

  28. Terwilliger, J.D. & Ott, J. Handbook of Human Genetic Linkage (Johns Hopkins University Press, Baltimore, 1994).

    Google Scholar 

  29. Welssenbach, J. et al. A second generation linkage map of the human genome. Nature 359, 794–801 (1993).

    Article  Google Scholar 

  30. Gyapay, G. et al. The 1993–94 Généthon human genetic linkage map. Nature Genet. 7, 246–339 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Dib, C. et al. A comprehensive genetic map of the human genome based on 5,264 micrasatellites. Nature 380, 152–154 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Chumakov, I.M. et al. A YAC contig map of the human genome. Nature 377 Supp., 174–297 (1995).

    Google Scholar 

  33. Sheffield, V.C. et al. A collection of tri- and tetranucleotide repeat markers used to generate high quality, high resolution human genome-wide linkage maps. Hum. Mol. Genet. 4, 1837–1844 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Hudson, T.J. et al. An STS-based map of the human genome. Science 270, 1945–1954 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Gyapay, G. et al. A radiation hybrid map of the human genome. Hum. Mol. Genet. 5, 339–346 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, T., Litt, M., Kramer, P. et al. Homozygosity mapping of Hallervorden–Spatz syndrome to chromosome 20p12.3–p13. Nat Genet 14, 479–481 (1996). https://doi.org/10.1038/ng1296-479

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1296-479

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing