Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mutations in the α1 subunit of the inhibitory glycine receptor cause the dominant neurologic disorder, hyperekplexia

Abstract

Hereditary hyperekplexia, or familial startle disease (STHE), is an autosomal dominant neurologic disorder characterized by marked muscle rigidity of central nervous system origin and an exaggerated startle response to unexpected acoustic or tactile stimuli. Linkage analyses in several large families provided evidence for locus homogeneity and showed the disease gene was linked to DNA markers on the long arm of chromosome 5. Here we describe the identification of point mutations in the gene encoding the α1 subunit of the glycine receptor (GLRA1) in STHE patients from four different families. All mutations occur in the same base pair of exon 6 and result in the substitution of an uncharged amino acid (leucine or glutamine) for Arg271 in the mature protein.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kirstein, L. & Silfverskiold, B.P. A family with emotionally precipitated “drop seizures.” Acta Physchiatr. neurol. Scand. 33, 471–476 (1958).

    Article  CAS  Google Scholar 

  2. Suhren, O., Bruyn, G.W. & Tuynman, J.A. Hyperekplexia: a hereditary startle syndrome. J. neurol. Sci. 3, 577–605 (1966).

    Article  Google Scholar 

  3. Andermann, F., Keene, D.L., Andermann, E. & Quesney, L.F. Startle disease or hyperekplexia: further delineation of the syndrome. Brain 103, 985–997 (1980).

    Article  CAS  Google Scholar 

  4. Ryan, S.G. et al. Startle disease or hyperexplexia: response to clonazepam and assignment of the gene (STHE) to chromosome 5q by linkage analysis. Ann. Neurol. 31, 663–668 (1992).

    Article  CAS  Google Scholar 

  5. Nigro, M.A. & Lim, H.-C.N. Hyperekplexia and sudden neonatal death. Pediatr. Neurol. 8, 221–225 (1992).

    Article  CAS  Google Scholar 

  6. Giacoia, G.P. & Ryan, S.G. Hyperekplexia as a cause of apnea and sudden infant death syndrome. Am. J. dis. Child (in the press).

  7. Markand, O.N., Garg, B.P. & Weaver, D.D. Familial startle disease (hyperekplexia): electrophysical studies. Arch. Neurol. 41, 71–74 (1984).

    Article  CAS  Google Scholar 

  8. Brown, P. et al. The hyperekplexias and their relationship to the normal startle reflex. Brain 114, 1903–1928 (1991).

    Article  Google Scholar 

  9. Matsumoto, J., Fuhr, P., Nigro, M. & Hallett, M. Physiological abnormalities in hereditary hyperekplexia. Ann. Neurol. 32, 41–50 (1992).

    Article  CAS  Google Scholar 

  10. Davis, M., Cederbaum, J.M., Aghajanian, G.K. & Gendelman, D.S. Effects of clonidine on habituation and sensitization of acoustic startle in normal, decerebrate and locus coeruleus lesioned rats. Psychopharmacology 47, 217–233 (1976).

    Article  CAS  Google Scholar 

  11. Warrington, J.A. et al. A radiation hybrid map of 18 growth factor, growth factor receptor, hormone receptor or neurotransmitter receptor genes on the distal region of the long arm of chromosome 5. Genomics 13, 803–808 (1992).

    Article  CAS  Google Scholar 

  12. Puckett, C. et al. Molecular cloning and chromosomal localization of one of the human glutamate receptor genes. Proc. natn. Acad. Sci. U.S.A. 88, 7557–7561 (1991).

    Article  CAS  Google Scholar 

  13. Buckle, V.J. et al. Chromosomal localization of GABAA receptor subunit genes: relationship to human genetic disease. Neuron 3, 647–654 (1989).

    Article  CAS  Google Scholar 

  14. Wasmuth, J.J., Bishop, D.T. & Westbrook, C.A. Report of the committee on the genetic constitution of chromosome 5. In Human Gene Mapping 11, Cytogenet. Cell Genet. 58, 261–294 (1991).

    Google Scholar 

  15. Ryan, S.G. et al. Genetic and radiation hybrid mapping of the hyperekplexia region on chromosome 5q. Am. J. hum. Genet. 51, 1334–1343 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Warrington, J.A., Bengtsson, U., Bailey, S.K., Lovett, M. & Wasmuth, J.J. A comparison of three methods to produce a high resolution physical map of 11 genes on the distal region of the long arm of human chromosome 5: radiation hybrid mapping, pulsed-field gel electrophoresis and fluorescent in situ hybridization. Am. J. hum. Genet. 51(suppl), A248 (1992).

    Google Scholar 

  17. Grenningloh, G. et al. The strychnine-binding subunit of the glycine receptor shows homology with nictonic acetylcholine receptors. Nature 238, 215–220 (1987).

    Article  Google Scholar 

  18. Heller, A.H. & Hallet, M. Electrophysiological studies with the spastic mutant mouse. Brain Res. 234, 299–308 (1982).

    Article  CAS  Google Scholar 

  19. Grenningloh, G. et al. Alpha subunit variants of the human glycine receptor: primary structures, functional expression and chromosomal localization of the corresponding genes. EMBO J. 9, 771–776 (1990).

    Article  CAS  Google Scholar 

  20. Malosio, M.-L. et al. Alternative splicing generates two variants of the α1 subunit of the inhibitory glycine receptor. J. biol. Chem. 264, 2048–2053 (1991).

    Google Scholar 

  21. Tebecis, A.K. & DiMaria, A. Strychnine-sensitive inhibition in the medullary reticular formation: evidence for glycine as an inhibitory transmitter. Brain Res. 40, 373–383 (1972).

    Article  CAS  Google Scholar 

  22. Davis, M., Gendelman, M., Tischler, D. & Gendelman, P.M. A primary acoustic startle circuit: lesion and stimulation studies. J. Neurosci. 2, 791–805 (1982).

    Article  CAS  Google Scholar 

  23. Krnjevic, K. Transmitters in motor systems. In Handbook of Physiology (ed. Geiger, S.R.) 107–154 (American Physiology Society, Bethesda, Maryland, 1981).

    Google Scholar 

  24. Langosch, D., Becker, C.-M. & Betz, H. The inhibitory glycine receptor: a ligand-gated chloride channel of the central nervous system. Eur. J. Biochem. 194, 1–8 (1990).

    Article  CAS  Google Scholar 

  25. Becker, C.-M., Hoch, W. & Betz, H. Glycine receptor heterogeneity in rat spinal cord during postnatal development. EMBO J. 7, 3717–3726 (1988).

    Article  CAS  Google Scholar 

  26. Schmieden, V., Grenningloh, G., Schofield, P.R. & Betz, H. Functional expression in Xenopus oocytes of the strychnine binding 48 kd subunit of the glycine receptor. EMBO J. 8, 695–700 (1989).

    Article  CAS  Google Scholar 

  27. Becker, C.-M., Schmieden, B., Paola, T., Strasser, U. & Betz, H. Isoform-selective deficit of glycine receptors in the mouse mutant spastic. Neuron 8, 283–289 (1992).

    Article  CAS  Google Scholar 

  28. Eicher, E.M. & Lane, P. Assignment of LG XVI to chromosome 3 in the mouse. J. Hered. 71, 315–318 (1980).

    Article  CAS  Google Scholar 

  29. Lane, P.W., Ganser, A.L., Kerner, A.L., White, W.F. Spasmodic, a mutation on chromosome 11 in the mouse. J. Hered. 78, 353–356 (1987).

    Article  CAS  Google Scholar 

  30. Buckwalter, M.S., Testa, C.M., Noebels, J.L. & Camper, S.A. Genetic mapping and evaluation of candidate genes for spasmodic, a neurological mouse mutation with abnormal startle response. Genomics 17, 279–286 (1993).

    Article  CAS  Google Scholar 

  31. Dana, S. & Wasmuth, J.J. Linkage of the leuS, emtB, and chr genes on chromosome 5 in humans and expression of human genes encoding protein synthesis components in human-Chinese hamster hybrids. Somatic cell Genet. 8, 245 (1982).

    Article  CAS  Google Scholar 

  32. Overhauser, J., McMahon, J. & Wasmuth, J.J. Identification of 28 DNA fragments that detect RFLPs in 13 distinct physical regions of the short arm of chromosome 5. Nuc. Acids Res. 15, 4617 (1987).

    Article  CAS  Google Scholar 

  33. Cox, D.R., Burmeister, M., Price, E.R., Kim, S. & Myers, R.M. Radiation hybrid mapping: a somatic cell genetic method for constructing high resolution maps of mammalian chromosomes. Science 250, 245–250 (1990).

    Article  CAS  Google Scholar 

  34. Sheffield, V.C., Cox, D.R., Lerman, L.S. & Myers, R.M. Attachment of a 40-base-pair G+C sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc. natn. Acad. Sci. U.S.A. 86, 232–236 (1989).

    Article  CAS  Google Scholar 

  35. Myers, R.M., Maniatis, T. & Lerman, L.S. Detection and localization of single base changes by denaturing gradient gel electrophoresis. Meth. Enzymol. 155, 501–527 (1987).

    Article  CAS  Google Scholar 

  36. Lerman, L.S. & Silverstein, K. Computation simulation of DNA melting and its application to denaturing gradient gel electrophoresis. Meth. Enzymol. 155, 482–501 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiang, R., Ryan, S., Zhu, YZ. et al. Mutations in the α1 subunit of the inhibitory glycine receptor cause the dominant neurologic disorder, hyperekplexia. Nat Genet 5, 351–358 (1993). https://doi.org/10.1038/ng1293-351

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1293-351

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing