Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Small nuclear ribonucleoprotein polypeptide N (SNRPN), an expressed gene in the Prader–Willi syndrome critical region

Abstract

Prader–Willi syndrome (PWS) is associated with paternally derived chromosomal deletions in region 15q11–13 or with maternal disomy for chromosome 15. Therefore, loss of the expressed paternal alleles of maternally imprinted genes must be responsible for the PWS phenotype. We have mapped the gene encoding the small nuclear RNA associated polypeptide SmN (SNRPN) to human chromosome 15q12 and a processed pseudogene SNRPNP1 to chromosome region 6pter–p21. Furthermore, SNRPN was mapped to the minimal deletion interval that is critical for PWS. The fact that the mouse Snrpn gene is maternally imprinted in brain suggests that loss of the paternally derived SNRPN allele may be involved in the PWS phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Prader, A., Labhart, A. & Willi, H., Syndrom von Adipositas, Kleinwuchs, Kryptorchidismus und Oligophrenie nach myotonie-artigem Zustand in Neugeborenalter. Schweiz. Med. Wochenschr. 86, 1260–1261 (1956).

    Google Scholar 

  2. Ledbetter, D.H. et al. Deletion of chromosome 15 as a cause of the Prader-Willi syndrome. New Engl. J. Med. 304, 325–329 (1981).

    Article  CAS  PubMed  Google Scholar 

  3. Butler, M.G., Meaney, F.J. & Palmer, C.G. Clinical and cytogenetic survey of 39 individuals with Prader-Labhart-Willi syndrome. Am. J. med. Genet. 23, 793–809 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Butler, M.G. Prader-Willi syndrome: Current understanding of cause and diagnosis. Am. J. med. Genet. 35, 319–335 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Magenis, R.E. et al. Comparison of the 15q deletions in Prader-Willi and Angelman syndromes: Specific regions, extent of deletions, parental origin, and clinical consequences. Am. J. med. Genet. 35, 333–349 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Nicholls, R.D., Knoll, J.H.M., Butler, M.G., Karam, S. & Lalande, M. Genetic imprinting suggested by maternal heterodisomy in non-deletion Prader-Willi syndrome. Nature 342, 281–285 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mascari, M.J. et al. The frequency of uniparental disomy in Prader-Willi Syndrome. Implications for molecular diagnosis. N. Engl. J. Med. 326, 1599–1607 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Magenis, R.E., Brown, M.G., Lacy, D.A., Budden, S. & LaFranchi, S. Is Angelman syndrome an alternate result of del(15)(q11q13)? Am. J. med. Genet 28, 829–838 (1987).

    Article  CAS  PubMed  Google Scholar 

  9. Malcolm, S. et al. Uniparental paternal disomy in Angelman's syndrome. Lancet 337, 694–697 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Wagstaff, J. et al. Maternal but not paternal transmission of 15q11-13-linked nondeletion Angelman syndrome leads to phenotypic expression. Nature Genet. 1, 291–294 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Kuwano, A. et al. Molecular dissection of the Prader-Willi/Angelman syndrome region (15q11-13) by YAC cloning and FISH analysis. Hum. molec. Genet 1, 417–425 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Guthrie, C. Messenger RNA splicing in yeast: Clues to why the spliceosome is a ribonucleoprotein. Science 253, 157–163 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. McAllister, G., Amara, S.G. & Lerner, M.R. Tissue-specific expression and cDNA cloning of small nuclear ribonucleoprotein-associated polypeptide N. Proc. natn. Acad. Sci. U.S.A. 85, 5296–5300 (1988).

    Article  CAS  Google Scholar 

  14. Li, S., Klein, E.S., Russo, A.F., Simmons, D.M. & Rosenfeld, M.G. Isolation of cDNA clones encoding small nuclear ribonucleoparticle-associated proteins with different tissue specificities. Proc. natn. Acad. Sci. U.S.A. 86, 9778–9782 (1989).

    Article  CAS  Google Scholar 

  15. Schmauss, C., McAllister, G., Ohosone, Y., Hardin, J.A. & Lerner, M.R. A comparison of snRNP-associated Sm-autoantigens: Human N, rat N and human B/B'. Nucl. Acids Res. 17, 1733–1743 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McAllister, G., Roby-Shemkovitz, A., Amara, S.G. & Lerner, M.R. cDNA sequence of the rat U snRNP-associated protein N: Description of a potential Sm epitope. EMBO J. 8, 1177–1181 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schmauss, C. & Lerner, M.R. The closely related small nuclear ribonucleoprotein polypeptides N and B/B' are distinguishable by antibodies as well as by differences in their mRNAs and gene structures. J. biol. Chem. 265, 10733–10739 (1990).

    CAS  PubMed  Google Scholar 

  18. Schmauss, C., Brines, M.L. & Lerner, M.R. The gene encoding the small nuclear ribonucleoprotein-associated protein N is expressed at high levels in neurons. J. biol. Chem. 267, 8521–8529 (1992).

    CAS  PubMed  Google Scholar 

  19. Sharpe, N.G., Williams, D.G. & Latchman, D.S. Regulated expression of the small nuclear ribonucleoprotein particle protein SmN in embryonic stem cell differentiation. Molec. cell Biol. 10, 6817–6820 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sundaresan, S. & Francke, U. Genes for β2-adrenergic receptor and the platelet-derived growth factor receptor map to mouse chromosome 18. Somat. Cell molec. Genet. 15, 367–371 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Chaillet, J.R. et al. The syntenic relationship between the critical deletion region for the Prader-Willi/Angelman syndromes and proximal mouse chromosome 7. Genomics 11, 773–776 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Left, S.E. et al. Maternal imprinting of the mouse Snrpn gene and conserved linkage homology with the human Prader-Willi syndrome region. Nature Genetics 2, 259–264 (1992).

    Article  Google Scholar 

  23. Robinson, W.P. et al. Molecular, cytogenetic and clinical investigations of Prader-Willi syndrome patients. Am. J. hum. Genet. 49, 1219–1234 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hamabe, J.-i., Kuroki, Y. & Imaizumi, K. DNA deletion and its parental origin in Angelman syndrome patients. Am. J. med. Genet. 41, 64–68 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Saitoh, S. et al. Familial Angelman syndrome caused by imprinted submicroscopic deletion encompassing GABAA receptor β3 subunit gene. Lancet 339, 366–367 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Wagstaff, J. et al. Localization of the gene encoding the GABAA receptor β3 subunit to the Angelman/Prader-Willi region of human chromosome 15. Am. J. hum. Genet. 49, 330–337 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Donlon, T. Report of the first international workshop on human chromosome 15 (1992). Cytogenet. Cell Genet. (in the press).

  28. Zhang, Y. & Tycko, B. Monoallelic expression of the human H19 gene. Nature Genet. 1, 40–44 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Bartolomei, M.S., Zemel, S. & Tilghman, S.M. Parental imprinting of the mouse H19 gene. Nature 351, 153–155 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Rokeach, L.A., Jannatipour, M., Haselby, J.A. & Hoch, S.O. Primary structure of a human small nuclear ribonucleoprotein polypeptide as deduced by cDNA analysis. J. Biol. Chem. 264, 5024–5030 (1989).

    CAS  PubMed  Google Scholar 

  31. Francke, U., Yang-Feng, T.L., Brissenden, J.E. & Ullrich, A. Chromosomal mapping of genes involved in growth control. In Molecular Biology of Homo Sapiens, Cold Spring Harbor Symp. Quant. Biol. 51, 855–866 (1986).

    Google Scholar 

  32. Oliver, N., Francke, U. & Pellegrino, M.A. Regional assignment of genes for mannose phosphate isomerase, pyruvate kinase-3 and β2-microglobulin expression on human chromosome 15 by hybridization of cells from at(15;22) (q14;q13.3). translocation carrier. Cytogenet. Cell Genet. 22, 506–510 (1978).

    Article  CAS  PubMed  Google Scholar 

  33. Francke, U. & Pellegrino, M.A. Assignment of the major histocompatibility complex to a region of the short arm of human chromosome 6. Proc. natn. Acad. Sci. U.S.A. 74, 1147–1151 and 5776 (1977).

    Article  CAS  Google Scholar 

  34. Barton, D.E., Yang-Feng, T.L. & Francke, U. The human tyrosine aminotransferase gene mapped to the long arm of chromosome 16 (region 16q22-q24) by somatic cell hybrid analysis and in situ hybridization. Hum. Genet. 72, 221–224 (1986).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Özçelik, T., Leff, S., Robinson, W. et al. Small nuclear ribonucleoprotein polypeptide N (SNRPN), an expressed gene in the Prader–Willi syndrome critical region. Nat Genet 2, 265–269 (1992). https://doi.org/10.1038/ng1292-265

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1292-265

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing