Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Germline mutations of the RET ligand GDNF are not sufficient to cause Hirschsprung disease

Abstract

Hirschsprung disease (HSCR, aganglionic megacolon) is a common congenital malformation leading to bowel obstruction, with an incidence of 1/5,000 live births. It is characterized by the absence of intrinsic ganglion cells in the myenteric and submucosal plexuses along variable lengths of the gastrointestinal tract1. As enteric neurons are derived from the vagal neural crest, HSCR is regarded as a neurocristopathy2. On the basis of a skewed sex-ratio ( M/F = 4/1) and a risk to relatives much higher than the incidence in the general population, HSCR has long been regarded as a sex-modified multifactorial disorder3,4. Accordingly, segregation analysis suggested an incompletely penetrant dominant inheritance in HSCR families with agan-glionosis extending beyond the sigmoid colon3. We and others have mapped a dominant gene for HSCR to chromosome 10q11.2 and have ascribed the disease to mutations in the RET protoonco-gene5–8. However, the lack of genotype-phenotype correlation, the low penetrance and the sex-dependent effect of RET mutations supported the existence of one or more modifier gene(s) in familial HSCR9. In addition, thus far, RET mutations only accounted for 50% and 15–20% of familial and sporadic HSCR patients, respectively9–11. RET encodes a tyrosine kinase receptor whose ligand was unknown12. Recently, the Glial cell line- derived neurotrophic factor (GDNF) has been identified to be a ligand for RET13,14. Moreover, Gdnf−/− knockout mutant mice display congenital intestinal agan-glionosis and renal agenesis15–17, a phenotype very similar to the Ret −/− mouse18. These data prompted us to hypothesize that mutations of the gene encoding GDNF could either cause or modulate the HSCR phenotype in some cases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rescorla, F., Morrison, A., Engles, D., West, K. & Grosfeld, J. Hirshsprung's disease. Evaluation of mortality and long-term function in 260 cases. Arch. Surg. 127, 934–942 (1992).

    Article  CAS  Google Scholar 

  2. Bolande, R. The neurocristopathies ; A unifyng concept of disease arising in neural crest maldevelopment. Hum. Path. 5, 409–429 (1973).

    Article  Google Scholar 

  3. Badner, J. & Chakravarty, A., Syndrome and Hirschsprung Disease : Evidence for pleiotropic effects of a single dominant gene. Am. J. Med. Genet. 35, 100–104 (1990).

    Article  CAS  Google Scholar 

  4. Passarge, E. The genetics of Hirschsprung disease. N. Engl. J. Med. 276, 138–143 (1987).

    Google Scholar 

  5. Angrist, M. et al. A gene for Hirschsprung disease (megacolon) in the pericentromeric region of human chromosome 10. Nature Genet. 4, 351–356 (1993).

    Article  CAS  Google Scholar 

  6. Lyonnet, S. et al. A gene for Hirschsprung disease maps to the proximal long arm of chromosome 10. Nature Genet. 4, 346–350 (1993).

    Article  CAS  Google Scholar 

  7. Edery, P. et al. Mutations of the RET proto-oncogene in Hirschsprung's disease. Nature 367, 378–380 (1994).

    Article  CAS  Google Scholar 

  8. Romeo, G. et al. Point mutations affecting the tyrosine kinase domain of the RET proto-oncogene in Hirschsprung's disease. Nature 367, 377–378 (1994).

    Article  CAS  Google Scholar 

  9. Attié, T. et al. Diversity of RET proto-oncogene mutations in Hirschsprung's disease. Hum. Mol. Genet. 4, 2407–2409 (1995).

    Article  Google Scholar 

  10. Yin, L. et al. Heterogeneity and low detection rate of RET mutations in Hirschsprung disease. Eur. J. Hum. Genet. 4, 821–830 (1994).

    Google Scholar 

  11. Angrist, M. et al. Mutation analysis of the RET receptor tyrosine kinase in Hirschsprung disease. Hum. Mol. Genet. 4, 821–830 (1995).

    Article  CAS  Google Scholar 

  12. Takahashi, M., Buma, Y., Iwamoto, T., Inaguma, Y. & Ikeda, H. Cloning and expression of the ret proto-oncogene encoding a tyrosine kinase with two potential transmembrane domains. Oncogene 3, 571–578 (1988).

    CAS  Google Scholar 

  13. Durbec, P. et al. Glial cell line-derived neurotrophic factor signalling through the Ret receptor tyrosine kinase. Nature 381, 789–793 (1996).

    Article  CAS  Google Scholar 

  14. Trupp, M. et al. Functional receptor for GDNF encoded by the c-ret proto-oncogene. Nature 381, 785–789 (1996).

    Article  CAS  Google Scholar 

  15. Moore, M. et al. Renal and neuronal abnormalities in mice lacking GDNF. Nature 382, 76–79 (1996).

    Article  CAS  Google Scholar 

  16. Pichel, J. et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382, 73–76 (1996).

    Article  CAS  Google Scholar 

  17. Sanchez, M. et al. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382, 70–73 (1996).

    Article  CAS  Google Scholar 

  18. Schuchardt, A., D'Agati, V., Larsson-Blomberg, L., Costantini, F. & Pachnis, V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367, 380–383 (1994).

    Article  CAS  Google Scholar 

  19. Schindelhauer, D., Schuffenhauer, S., Gasser, T., Steinkasserer, A. & Meitinger, T. The gene coding for glial cell line derived neurotrophic factor (GDNF) maps to chromosome 5p12-p13.1. Genomics 28, 605–607 (1995).

    Article  CAS  Google Scholar 

  20. Richard, I. & Beckmann, J. How neutral are synonymous codon mutations? Nature Genet. 10, 259 (1995).

    Article  CAS  Google Scholar 

  21. Lin, L., Doherty, D., Lile, J., Bektesh, S. & Collins, F. GDNF: a glial cellline-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260, 1130–1132 (1993).

    Article  CAS  Google Scholar 

  22. Oppenheim, R. et al. Developing motor neurons rescued from programmed and axotomy-induced cell death by GDNF. Nature 373, 344–346 (1995).

    Article  CAS  Google Scholar 

  23. Emanuel, B., Padorr, M. & Swenson, O. Mongolism associated with Hirschsprung's disease. J. Pediat. 66, 437–439 (1965).

    Article  CAS  Google Scholar 

  24. Passarge, E. Wither polygenic inheritance: mapping Hirschsprung disease. Nature Genet. 4, 325–326 (1993).

    Article  CAS  Google Scholar 

  25. Kajiwara, K., Berson, E. & Dryja, T. Digenic retinis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci. Science 264, 1604–1607 (1994).

    Article  CAS  Google Scholar 

  26. Puffenberger, E.G. et al. A missense mutation of the endothelin-B receptor gene in muitigenic Hirschsprung's disease. Cell 79, 1257–1266 (1994).

    Article  CAS  Google Scholar 

  27. Amiei, J. et al. Heterozygous endothelin receptor B (EDNRB) mutations in isolated Hirschsprung disease. Hum. Mol. Genet. 5, 355–357 (1996).

    Article  Google Scholar 

  28. Edery, P. et al. Mutation of the endothelin-3 gene in the Waardenburg-Hirschsprung disease (Shah-Waardenburg syndrome). Nature Genet. 12, 442–444 (1996).

    Article  CAS  Google Scholar 

  29. Hofstra, R. et al. A homozygous mutation in the endothelin-3 gene associated with a combined Waardenburg type 2 and Hirschsprung phenotype (Shah-Waardenburg syndrome). Nature Genet 12, 445–447 (1996).

    Article  CAS  Google Scholar 

  30. Daub, H., Weiss, F., Wallasch, C. & Ullrich, A. Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 379, 557–560 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salomon, R., Attié, T., Pelet, A. et al. Germline mutations of the RET ligand GDNF are not sufficient to cause Hirschsprung disease. Nat Genet 14, 345–347 (1996). https://doi.org/10.1038/ng1196-345

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1196-345

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing