Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular basis of mouse microphthalmia (mi) mutations helps explain their developmental and phenotypic consequences

Abstract

Mutations in the mouse microphthalmia (mi) gene affect the development of a number of cell types including melanocytes, osteoclasts and mast cells. Recently, mutations in the human mi gene (MITF) were found in patients with Waardenburg Syndrome type 2 (WS2), a dominantly inherited syndrome associated with hearing loss and pigmentary disturbances. We have characterized the molecular defects associated with eight murine mi mutations, which vary in both their mode of inheritance and in the cell types they affect. These molecular data, combined with the extensive body of genetic data accumulated for murine mi, shed light on the phenotypic and developmental consequences of mi mutations and offer a mouse model for WS2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hertwig, P. Neue Mutationen und Koppelungsgruppen bei der Hausmaus. Z. Indukt. Abstammungs-Vererbungsl. 80, 220–246 (1942).

    Google Scholar 

  2. Silvers, W.K. The coat colors of mice. A Model for Mammalian Gene Action and Interaction, 268–291 (Springer-Verlag, New York, 1979).

    Google Scholar 

  3. Green, M.C. Catalog of mutant genes and polymorphic loci. in Genetic variants and strains of the laboratory mouse (eds M F. Lyon & A. G. Searle) 236–238 (Oxford University Press, Oxford, 1989).

    Google Scholar 

  4. Tachibana, M. et al. Cochlear disorder associated with melanocyte anomaly in mice with atransgenic insertional mutation. Molec. cell. Neurosci. 3, 433–445 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Krakowsky, J.M., Boissy, R.E., Neumann, J.C. & Lingrel, J.B. A DNA insertional mutation results in microphthalmia in transgenic mice. Transgenic Res. 2, 14–20 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Asher, J.H. & Friedman, T.B. Mouse and hamster mutants as models for Waardenburg syndrome in humans. J. med. Genet. 27, 618–626 (1990).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Grüneberg, H. Some observations on the microphthalmia gene in the mouse. J. Genet. 49, 1–13 (1948).

    Article  PubMed  Google Scholar 

  8. Marks, S.C. & Walker, D.G. The hematogenous origin of osteoclasts: experimental evidence from osteopetrotic (microphthalmic) mice treated with spleen cells from beige mouse donors. Am. J. Anat. 161, 1–10 (1981).

    Article  PubMed  Google Scholar 

  9. Stevens, J. & Loutit, J.F. Mast cells in spotted mutant mice(W Ph mi). Proc. R. Soc. Lond. B. 215, 405–409 (1982).

    Article  CAS  PubMed  Google Scholar 

  10. Thesingh, C.W. & Scherft, J.P. Fusion disability of embryonic osteoclast precursor cells and macrophages in the microphthalmic osteopetrotic mouse. Bone 6, 43–52 (1985).

    Article  CAS  PubMed  Google Scholar 

  11. Stechschulte, D.J. et al. Effect of the mi allele on mast cells, basophils, natural killer cells, and osteoclasts in C57BI/6J mice. J. cell. Physiol. 132, 565–570 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Hodgkinson, C.A. et al. Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell 74, 395–404 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Hughes, M.J., Lingrel, J.B., Krakowsky, J.M. & Anderson, K.P. A helix-loop-helix transcription factor-like gene is located at the mi locus. J. biol. Chem. 268, 20687–20690 (1993).

    CAS  PubMed  Google Scholar 

  14. Beckmann, H., Su, L.-K. & Kadesch, T. TFE3: a helix-loop-helix protein that activates transcription through the immunoglobulin enhancer μE3 motif. Genes Dev. 4, 167–179 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Carr, C.S. & Sharp, P.A. A helix-loop-helix protein related to the immunoglobulin E box-binding proteins. Molec. cell. Biol. 10, 4384–4388 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao, G.-Q., Zhao, Q., Zhou, X., Mattei, M.-G. & DeCrombrugghe, B. TFEC, a basic helix-loop-helix protein, forms heterodimers with TFE3 and inhibits TFE3-dependent transcription activation. Molec. cell. Biol. 13, 4505–4512 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hemesath, T.J. et al. Microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. (in the press).

  18. Tassabehji, M., Newton, V.E. & Read, A.P. MITF gene mutations in patients with Type 2 Waardenburg Syndrome. Nature Genet. 8, 251–255 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Edwards, J.B.D.M., Delort, J. & Mallet, J. Oligodeoxyribonucleotide ligation to single-stranded cDNAs: a new tool for cloning 5′ ends of mRNAs and for constructing cDNA libraries by in vitro amplification. Nucl. Acids Res. 19, 5227–5232 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cavener, D.R. & Ray, S.C. Eukaryotic start and stop translation sites. Nucl. Acids Res. 19, 3185–3192 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fisher, D.E., Parent, L.A. & Sharp, P.A. High affinity DNA-binding Myc analogs: recognition by an α helix. Cell 72, 467–476 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Ferré-D'Amaré, A.R., Prendergast, G.C., Ziff, E.B. & Burley, S.K. Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 363, 38–45 (1993).

    Article  PubMed  Google Scholar 

  23. Ferré-D'Amaré, A.R., Pognonec, P., Roeder, R.G. & Burley, S.K. Structure and function of the b/HLH/Z domain of USF. EMBO J. 13, 180–189 (1994).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hu, Y.-F., Lüscher, B., Admon, A., Mermod, N. & Tjian, R. Transcription factor AP-4 contains multiple dimerization domains that regulate dimer specificity. Genes Dev. 4, 1741–1752 (1990).

    Article  CAS  PubMed  Google Scholar 

  25. Blackwood, E.M. & Eisenman, R.N. Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251, 1211–1217 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Gregor, P.D., Sawadogo, M. & Roeder, R.G. The adenovirus major late transcription factor USF is a member of the helix-loop-helix group of regulatory proteins and binds to DNA as a dimer. Genes Dev. 4, 1730–1740 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Miller, D.S. Coat color and behavior mutations in inbred mice under chronic low-level γ-irradiation. Radiation Res. 19, 184–185 (1963).

    Google Scholar 

  28. Hollander, W.F. Mouse News Lett. 30, 29 (1964).

    Google Scholar 

  29. Roman, C., Cohn, L. & Calame, K. A dominant negative form of transcription activator mTFE3 created by differential splicing. Science 254, 94–97 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Fisher, D.E., Carr, C.S., Parent, L.A. & Sharp, P.A. TFEB has DNA-binding and oligomerization properties of a unique helix-loop-helix/leucine-zipper family. Genes Dev. 5, 2342–2352 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. Lerner, A.B. Designation of a provisional gene symbol for a new mouse mutant. Mouse News Lett. 74, 125 (1986).

    Google Scholar 

  32. Lerner, A.B. et al. A mouse model for vitiligo. J. invest. Dermatol. 87, 299–304 (1986).

    Article  CAS  PubMed  Google Scholar 

  33. Lamoreux, M.L., Boissy, R.E., Womack, J.E. & Nordlund, J.J. The vit gene maps to the mi (Microphthalmia) locus of the laboratory mouse. J. Hered. 83, 435–439 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Wolfe, H.G. Mouse News Lett. 26, 35 (1962).

    Google Scholar 

  35. Wolfe, H.G. & Coleman, D.L. Mi-spotted: a mutation in the mouse. Genet. Res. Camb. 5, 432–440 (1964).

    Article  Google Scholar 

  36. Bousset, K., Henriksson, M., Lüscher-Firzlaff, J.M., Litchfield, D.W. & Lüscher, B. Identification of casein kinase II phosphorylation sites in Max: effects on DNA-binding kinetics of Max homo- and Myc/Max heterodimers. Oncogene 8, 3211–3220 (1993).

    CAS  PubMed  Google Scholar 

  37. Kretzner, L., Blackwood, E.M., Mac, J. & Eisenmann, R.N. Transcriptional repression by Max proteins p21 and p22. In The negative regulation of hematopoiesis (eds M. Guigon .) 75–82 (Colloque INSERM/John Libbey Eurotext, 1993).

    Google Scholar 

  38. Stone, J. et al. Definition of regions in human c-myc that are involved in transformation and nuclear localization. Molec. cell. Biol. 7, 1697–1709 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Grüneberg, H. The genetics of the mouse (Martinus Nijhoff, The Hague, 1952).

  40. Hollander, W.F. Complementary alleles at the mi-locus in the mouse. Genetics 60, 189 (1968).

    Google Scholar 

  41. Konyukhov, B.V. & Osipov, V.V. Interallelic complementation of microphthalmia and White genes in mice. Genetika 4, 65–76 (1968).

    Google Scholar 

  42. Raz, E., Schejter, E.D. & Shilo, B.Z. Interallelic complementation among DER/flb alleles: Implications for the mechanism of signal transduction by receptor-tyrosine kinases. Genetics 129, 191–201 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Aroian, R.V., Lesa, G.M. & Sternberg, P.W. Mutations in the Caenorhabditis elegans let-23 EGFR-like gene define elements important for cell-type specificity and function. EMBO J. 13, 360–366 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Waardenburg, P.J. A new syndrome combining developmental anomalies of the eyelids, eyebrows and noseroot with pigmentary anomalies of the iris and head hair and with congenital deafness. Am. J. hum. Genet. 3, 195–253 (1951).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Church, G.M. & Gilbert, W. Genomic sequencing. Proc. natn. Acad. Sci. U.S.A. 81, 1991–1995 (1984).

    Article  CAS  Google Scholar 

  46. Casanova, J.-L., Pannetier, C., Jaulin, C. & Kourilsky, P. Optimal conditions for directly sequencing double-stranded PCR products with Sequenase. Nucl. Acids Res. 18, 4028 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jenkins, N.A., Copeland, N.G., Taylor, B.A. & Lee, B.K. Organization, distribution and stability of endogenous ecotropic murine leukemia virus DNA sequences in chromosomes of Mus musculus . J. Virol. 43, 26–36 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Stelzner, K.F. Mouse News Lett. 31, 40 (1964).

    Google Scholar 

  49. Stelzner, K.F. Mouse News Lett. 34, 41 (1966).

    Google Scholar 

  50. Grobman, A.B. & Charles, D.R. Mutant white mice. A new dominant autosomal mutant affecting coat color in Mus musculus . J. Hered. 38, 381–384 (1947).

    Article  CAS  PubMed  Google Scholar 

  51. Markert, C.L. & Silvers, W.K. The effects of genotype and cell environment on melanoblast differentiation in the house mouse. Genetics 41, 429–450 (1956).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Packer, S.O. The eye and skeletal effects of two mutant alleles at the microphthalmia locus of Mus musculus . J. exp. Zool. 165, 21–45 (1967).

    Article  CAS  PubMed  Google Scholar 

  53. Deol, M.S. The relationship between abnormalities of pigmentation and of the inner ear. Proc. Roy. Soc. Lond. A. 175, 201–217 (1970).

    CAS  Google Scholar 

  54. Miner, G. Mouse News Lett. 38, 25 (1968).

    Google Scholar 

  55. Wood, B.C. & Miner, G. Mouse News Lett. 40, 32 (1969).

    Google Scholar 

  56. Sanders Zimring, D.C. Characterization of a new microphthalmia mutation in the DBA/2N strain of inbred mice. Ph.D. Thesis. (Texas A & M University, 1992).

  57. Southard, J.L. Mouse News Lett. 51, 23 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steingrímsson, E., Moore, K., Lamoreux, M. et al. Molecular basis of mouse microphthalmia (mi) mutations helps explain their developmental and phenotypic consequences. Nat Genet 8, 256–263 (1994). https://doi.org/10.1038/ng1194-256

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1194-256

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing