Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Drosophila CBP is required for dorsal–dependent twist gene expression

Abstract

Although CREB-binding protein (CBP) functions as a co-activator of many transcription factors1–3, relatively little is known about the physiological role of CBP. Mutations in the human CBP gene are associated with Rubinstein-Taybi syndrome, a haplo-insufficiency disorder characterized by abnormal pattern formation4. Recently, we isolated a Drosophila CBP (dCBP) mutant5, and found dCBP to be maternally expressed, suggesting that it plays a role in early embryogenesis. Mesoderm formation is one of the most important events during early embryogenesis. To initiate the differentiation of the mesoderm in Drosophila, multiple zygotic genes such as twist (twi) and snail (sna), which encode a basic-helix-loop-helix and a zinc finger transcription factor, respectively, are required6,7. The transcription of these genes is induced by maternal dorsal (dl) protein (Dl; refs 8–10), a transcription factor that is homologous to the NF-κB family of proteins11–13. The activity of dl is negatively regulated by cactus (cact), a Drosophila homologue of 1κB14. Here, we show that dCBP mutants fail to express twi and generate twisted embryos. This is explained by results showing that dCBP is necessary for dl-mediated activation of the twi promoter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chrivia, J.C. et al. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365, 855–859 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Kwok, R.P.S. et al. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370, 223–226 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Janknecht, R. & Hunter, T. A growing coactivator network. Nature 383, 22–23 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Petrij, F. et al. Rubinstein–Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 376, 348–351 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Akimaru, H. et al. Drosophila CBP is a co-activator of cubitus interruptus in hedgehog signalling. Nature 386, 735–738 (1997).

    Google Scholar 

  6. Thisse, B., Stoetzel, C., Gorostiza-Thisse, C. & Perrin-Schmitt, F. Sequence of the twist gene and nuclear localization of its protein in endomesodermal cells of early Drosophila embryos. EMBO J. 7, 2175–2183 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Boulay, J.L., Dennefeld, C. & Alberga, A. The Drosophila developmental gene snail encodes a protein with nucleic acid binding fingers. Nature 330, 395–398 (1987).

    Article  CAS  PubMed  Google Scholar 

  8. Thisse, C., Perrin-Schmitt, F., Stoetzel, C. & Thisse, B. Sequence-specific transactivation of the Drosophila twist gene by the dorsal gene product. Cell 65, 1191–1201 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Pan, D., Huang, J.-D. & Courey, A.J. Functional analysis of the Drosophila twist promoter reveals a dorsal-binding ventral activator region. Genes Dev. 5, 1892–1901 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Jiang, J., Ip, Y.T., Kosman, D. & Levine, M. The dorsal morphogen gradient regulates the mesoderm determinant twist in early Drosophila embryos. Genes Dev. 5, 1881–1891 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Steward, R. Dorsal, an embryonic polarity gene in Drosophila, is homologous to the vertebrate proto-oncogene, c-rel. Science 238, 692–694 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Ghosh, S. et al. Cloning of the p50 DNA binding subunit of NF-κB: homology to rel and dorsal. Cell 62, 1019–1029 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Kieran, M. et al. The DNA binding subunit of NF-κB is identical to factor KBF1 and homologous to the rel oncogene product. Cell 62, 1007–1018 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Geisler, R., Bergmann, A., Hiromi, Y. & Nüsslein-Volhard, C. cactus, a gene involved in dorsoventral pattern formation of Drosophila, is related to the IκB gene family of vertebrates. Cell 71, 613–621 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Perkins, N.D. et al. Regulation of NF-κB by cyclin-dependent kinases associated with the p300 coactivator. Science 275, 523–527 (1996).

    Article  Google Scholar 

  16. Vortkamp, A., Gessler, M. & Grzeschik, K.-H. GLI3 zinc-finger gene interrupted by translocations in Greig syndrome families. Nature 352, 539–540 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Hui, C.-C. & Joyner, A.L. A mouse model of Greig cephalopolysyndactyly syndrome: the extra-toesJ mutation contains an intragenic deletion of the Gli3 gene.Nature Genet. 3, 241–245 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Howard, T.D. et at. Mutations in TWIST, a basic helix-loop-helix transcription factor, in Saethre-Chotzen syndrome. Nature Genet. 15, 36–41 (1997).

    Article  PubMed  Google Scholar 

  19. El Ghouzzi, V. et al. Mutations of the TWIST gene in the Saethre-Chotzen syndrome. Nature Genet. 15, 42–46 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Zalokar, M. & Erk, I. Phase-partition fixation and staining of Drosophila eggs. Stain Technol. 52, 89–95 (1977).

    Article  CAS  PubMed  Google Scholar 

  21. Govind, S., Brennan, L. & Steward, R. Homeostatic balance between dorsal and cactus proteins in the Drosophila embryo. Development 117, 135–148 (1993).

    CAS  PubMed  Google Scholar 

  22. Tautz, D. & Pfeifle, C. A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98, 81–85 (1989).

    Article  CAS  PubMed  Google Scholar 

  23. Leptin, M. & Grunewald, B. Cell shape changes during gastrulation in Drosophila. Development 110, 73–84 (1990).

    CAS  PubMed  Google Scholar 

  24. Roth, S., Stein, D. & Nüsslein-Volhard, C. A gradient of nuclear localization of the dorsal protein determines dorsoventral pattern in the Drosophila embryo. Cell 59, 1189–1202 (1989).

    Article  CAS  PubMed  Google Scholar 

  25. Nüsslein-Volhard, C., Wieschaus, E. & Kluding, H. Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. I. Zygotic loci on the second chromosome. Wilhelm Roux's Arch. Dev. Biol. 193, 267–282 (1984).

    Article  Google Scholar 

  26. Chou, T.-B. & Perrimon, N. Use of a yeast site-specific recombinase to produce female germline chimeras in Drosophila. Genetics 131, 643–653 (1992).

    Google Scholar 

  27. Dai, P. et al. CBP as a transcriptional coactivator of c-Myb. Genes Dev. 10, 528–540 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Jiang, J. & Levine, M. Binding affinities and cooperative interactions with bHLH activators delimit threshold responses to the dorsal gradient morphogen. Cell 72, 741–752 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Krasnow, M.A., Saffman, E.E., Kornfeld, K. & Hogness, D.S. Transcriptional activation and repression by Ultrabithorax proteins in cultured Drosophila cells. Cell 57, 1031–1043 (1989).

    Article  CAS  PubMed  Google Scholar 

  30. Thummel, C.S., Boulet, A.M. & Lipshitz, H.D. Vectors for Drosophila P-element-mediated transformation and tissue culture transfection. Gene 74, 445–456 (1988).

    Article  CAS  PubMed  Google Scholar 

  31. Nocera, P.P.D. & Dawid, I.B. Transient expression of genes introduced into cultured cells of Drosophila. Proc. Natl. Acad. Sci. USA 82, 1025–1036 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunsuke Ishii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akimaru, H., Hou, DX. & Ishii, S. Drosophila CBP is required for dorsal–dependent twist gene expression. Nat Genet 17, 211–214 (1997). https://doi.org/10.1038/ng1097-211

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1097-211

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing