Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Identical mutations in three different fibroblast growth factor receptor genes in autosomal dominant craniosynostosis syndromes

Abstract

Pfeiffer syndrome (PS; McKusick MIM 101600) is an autosomal dominant craniosynostosis syndrome with characteristic craniofacial anomalies and broad thumbs and big toes1,2. We have previously demonstrated genetic heterogeneity in PS and mapped a gene to chromosome 8 (ref. 3) and a second to chromosome 10 (ref. 4). The gene on chromosome 8 is the fibroblast growth factor receptor 1 (FGFR1) with a common mutation (C755G) predicting a Pro252Arg substitution5. The gene on chromosome 10 is FGFR2 with several different mutations causing sporadic and familial PS 4,6,7,8 (Table 1). We report a recurrent single point mutation in the FGFR3 gene, located on chromosome 4p, in ten unrelated families with craniosynostosis syndromes. This mutation (C749G) predicts a Pro250Arg amino acid substitution in the extracellular domain of the FGFR3 protein. Interestingly, this common mutation occurs precisely at the analogous position within the FGFR3 protein as the mutations in FGFR1 (Pro252Arg) and FGFR2 (Pro253Arg) previously reported in Pfeiffer5 and Apert9 syndromes, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. McKusick, V.A. (1994) Mendelian Inheritance in Man. A Catalog of Human Genes and Genetic Disorders. 11th edn. 759–761 (Johns Hopkins University Press, Baltimore, 1994).

    Google Scholar 

  2. Cohen, M.M. Jr., Pfeiffer syndrome update, clinical subtypes and guidelines for differential diagnosis. Am J. Med. Genet. 45, 300–307 (1993).

    Article  PubMed  Google Scholar 

  3. Robin, N.H. et al. Linkage of Pfeiffer syndrome to chromosome 8 centromere and evidence for genetic heterogeneity. Hum Mol. Genet. 3, 2153–2158 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Schell, U. et al. Mutations in FGFR1 and FGFR2 cause familial and sporadic Pfeiffer syndrome. Hum. Mol. Genet. 4, 323–328 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Muenke, M. et al. A common mutation in the fibroblast growth factor receptor 1 gene in Pfeiffer syndrome. Nature Genet. 8, 269–274 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Lajeunie, E. et al. FGFR2 mutations in Pfeiffer syndrome. Nature Genet. 9, 108 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Rutland, P. et al. Identical mutations in the FGFR2 gene cause both Pfeiffer and Crouzon syndrome phenotypes. Nature Genet. 9, 173–176 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Meyers, G.A. et al. FGFR2 Exon IIIa and IIIc mutations in Crouzon, Jackson-Weiss and Pfeiffer syndromes: evidence for missense changes, insertions and a deletion due to alternative RNA splicing. Am. J. Hum. Genet. 58, 491–498 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wilkie, A.O.M. et al. Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nature Genet. 9, 165–172 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Hollway, G.E., Phillips, H.A., Ades, L.C., Haan, E.A. & Mulley, J.C. Localization of craniosynostosis Adelaide type to 4p16. Hum. Mol. Genet. 4, 681–683 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Von Gernet, S. et al. Craniosynostosis suggestive of Saethre-Chotzen syndrome: clinical description of a large kindred and exclusion of candidate regions on 7p. Am. J. Med. Genet. 63, 177–184 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Shiang, R. et al. Mutations in the transmembrane domain of FGFR-3 cause the most common genetic form of dwarfism, achondroplasia. Cell 78, 335–342 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Rousseau, F. et al. Mutations in the gene encoding fibrobiast growth factor receptor-3 in achondroplasia. Nature 371, 252–254 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Tavormina, P.L. et al. Thanatophoric dysplasia (types I & II) caused by distinct mutations in fibroblast growth factor receptor 3. Nature Genet. 9, 321–328 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Bellus, G.A. et al. A recurrent mutation in the tyrosine kinase domain of fibroblast growth factor receptor 3 causes hypochondroplasia. Nature Genet. 10, 357–59 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Meyers, G.A. et al. Fibroblastgrowthfactorreceptor 3 (FGFR3) transmembrane mutation in Crouzon syndrome with acanthosis nigricans. Nature Genet. 11, 462–464 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Neilson, K.M. & Friesel, R.E. Constitutive activation of fibroblast growth factor receptor-2 by a point mutation associated with Crouzon syndrome. J. Biol. Chem. 44, 26037–26040 (1995).

    Article  Google Scholar 

  18. Webster, M.K. & Donohue, D.J. Constitutive activation of fibroblast growth factor receptor 3 by the transmembrane domain point mutation found in achondroplasia. EMBO J. 15, 520–527 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Naski, M.C., Wang, Q., Xu, J. & Ornitz, D.M. Graded activation of fibroblast growth factor receptor 3 by mutations causing achondroplasia and thanatophoric dysplasia. Nature Genet. 13: 233–237 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Colvin, J.S., Bonne, B.A., Harding, G.W., McEwen, D.G. & Ornitz, D.M. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptors. Nature Genet. 12, 390–397 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Deng, C., Wynshaw-Boris, A., Zhou, F., Kuo, A. & Leder, P. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 84, 911–921 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Johnson, D. & Williams, L.T. Structural and functional diversity in the FGF receptor multigene family. Adv. Cancer Res. 60, 1–41 (1993).

    CAS  PubMed  Google Scholar 

  23. Mason, I.J. The ins and outs of fibroblast growth factor receptors. Cell 78, 547–552 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Peters, K., Ornitz, D., Werner, S. & Williams, L.T. Unique expression pattern of the FGF receptor 3 gene during mouse organogenesis. Devl. Biol. 155, 423–430 (1993).

    Article  CAS  Google Scholar 

  25. Li, X. et al. Effect on splicing of a silent FGFR2 mutation in Crouzon syndrome. Nature Genet. 9, 232 (1995).

    Article  PubMed  Google Scholar 

  26. Tavormina, P.L. et al. Another mutation that results in the substitution of an unpaired cysteine residue in the extracellular domain of FGFR3 in thanatophoric dysplasia. Hum. Mol. Genet. 11, 2175–2177 (1995).

    Article  Google Scholar 

  27. Rousseau, F. et al. Missense FGFR3 mutations create cysteine residues in thanatophoric dwarfism type I (TDI). Hum. Mol. Genet 5, 509–512 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellus, G., Gaudenz, K., Zackai, E. et al. Identical mutations in three different fibroblast growth factor receptor genes in autosomal dominant craniosynostosis syndromes. Nat Genet 14, 174–176 (1996). https://doi.org/10.1038/ng1096-174

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1096-174

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing