Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation

Abstract

Early events in neuronal differentiation are generally considered to be regulated by factors independent of alterations in membrane permeability. Weaver mice harbour a mutation that blocks neuronal differentiation just after cessation of cell division, prior to cell migration and synaptogenesis. Cerebellar granule cells in homozygous weaver mice fail to differentiate, either because intrinsic cues are absent or because the granule cells are unable to respond to those cues. We now report that weaver mice have a missense mutation in a gene encoding a G–protein coupled inward rectifier potassium channel. The mutation alters the putative ion–permeable, pore–forming domain of the protein, suggesting that granule cell differentiation is regulated by changes in membrane permeability.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lane, P.W. Mouse News Lett. 30–32 (1964).

  2. Rakic, P. & Sidman, R.L. Sequence of developmental abnormalities leading to granule cell deficit in cerebellar cortex of weaver mutant mice. J. comp. Neurol. 152, 103–132 (1973).

    Article  CAS  PubMed  Google Scholar 

  3. Rakic, P. & Sidman, R.L. Organization of cerebellar cortex secondary to deficit of granule cells in weaver mutant mice. J. Comp. Neurol. 152, 133–161 (1973).

    Article  CAS  PubMed  Google Scholar 

  4. Rakic, P. & Sidman, R.L. Weaver mutant mouse cerebellum: defective neuroal migration secondary to abnormality of Bergmann glia. Proc. natn. Acad. Sci. U.S.A. 70, 240–244 (1973).

    Article  CAS  Google Scholar 

  5. Rezai, Z. & Yoon, C.H. Abnormal rate of granule cell migration in the cerebellum of “weaverrdquo; mutant mice. Dev. Biol. 29, 17–26 (1972).

    Article  CAS  PubMed  Google Scholar 

  6. Lyon, M.F. & Searle, A.G. Genetic Variants and Strains of the Laboratoiy Mouse. 2nd ed (Oxford University Press, New York, 1989).

    Google Scholar 

  7. Wood, K.A., Dipasquale, B. & Youle, R.J. In situ labeling of granule cells for apoptosis associated DNA fragmentation reveals different mechanisms of cell loss in developing cerebellum. Neuron 11, 621–632 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Smeyne, R.J. & Goldowitz, D. Development and death of external granular layer cells in the weaver mouse cerebellum: a quantitative study. J. Neurosci. 9, 1608–1620 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gao, W.O., Heintz, N. & Hatten, M.E. Cerebellar granule cell neurogenesis is regulated by cell-cell interactions in vitro. Neuron 6, 705–715 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Goldowitz, D. The weaver granuloprival phenotype is due to intrinsic action of the mutant locus in granule cells: evidence from homozygous weaver chimeras. Neuron 2, 1565–1575 (1989).

    Article  CAS  PubMed  Google Scholar 

  11. Gao, W.Q., Liu, X.L. & Hatten, M.E. The weaver gene encodes a nonautonomous signal for CNS neuronal differentiation. Cell 68, 841–854 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Gao, W.Q. & Hatten, M.E. Neuronal differentiation rescued by implantation of Weaver granule cell precursors into wild-type cerebellar cortex. Science 260, 367–369 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Schmidt, M.J. et al. Dopamine deficiency in the weaver mutant mouse. J. Neurosci. 2, 376–380 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Harrison, S.M. & Roffler-Tarlov, S. Male-sterile phenotype of the neurological mouse mutant weaver. Dev. Dyn. 200, 26–38 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Eisenberg, B. & Messer, A. Tonic/clonic seizures in a mouse mutant carrying the weaver gene. Neurosci. Lett. 96, 168–172 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Mjaatvedt, A.E., Citron, M.P. & Reeves, R.H. High-resolution mapping of D16ted-1, Gart, Gas-4 Cbr, Pcp-4 and Erg on distal mouse chromosome 16. Genomics 17, 382–086 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Reeves, R.H. et al. The mouse neurological mutant weaver maps within the region of chromosome 16 that is homologous to human chromosome 21. Genomics 5, 522–526 (1989).

    Article  CAS  PubMed  Google Scholar 

  18. Patil, N. et al. A high resolution physical map of 2.5 Mbp of the Down syndrome region on chromosome 21. Hum. molec. Genet. 3, 1811–1817 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Peterson, A. et al. A transcript map of the Down syndrome critical region on chromosome 21. Hum. molec. Genet. 3, 1735–1742 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Tsaur, M-E. et al. Isolation of a cDNA clone encoding a KATP channel-like protein expressed in insulin-secreting cells, localization of the humangene to chromosome band 21q22.1 and linkage studies with NIDMM. Diabetes 44, 592–696 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Lesage, F. et al. Cloning provides evidence for a family of inward rectifier and G-protein coupled channels in the brain. FEBS Lett. 353, 37–42 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Tejedor, F. et al. minibrain: a new protein kinase family involved in postembryonic neurogenesis in Drosophila. Neuron 14, 287–301 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Breen, M. et al. Towards high resolution maps of the mouse and human genomes —afacility for ordering markers to 0.1 cM resolution. Hum. Molec. Genet. 3, 621–627 (1994).

    Article  CAS  Google Scholar 

  24. Dietrich, W. et al. A Genetic map of the mouse suitable for typing Intraspecific Crosses. Genetics 131, 423–447 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Orieta, M., Iwahana, H., Kanazawa, H., Hayashi, K. & Sekiya, T. Detection of polymorphismsof human DNA by gel elertroprwesis as single-strand polymorphisms. Proc. natn. Acad. Sci. U.S.A. 86, 2766–2770 (1989).

    Article  Google Scholar 

  26. Hoshi, T. & Zagotta, W.N. Recent advances in the understanding of potassium channel function. Curr Opin. Neurobiol. 3, 283–290 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Yool, A.J. & Schwarz, T.L. Alteration of ionic selectivity of a K+ channel by mutation of the H5 region. Nature 340, 700–704 (1991).

    Article  Google Scholar 

  28. Hartman, H.A. et al. Exchange of conduction pathways between two related K+ channels Science 251, 942–944 (1991).

    Article  Google Scholar 

  29. Heginbotham, L., Abramson, T. & MacKinnon, R. A functional connection between the pores of distantly related ion channels as revealed by mutant K+ channels. Science 258, 1152–1155 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Taglialatela, M., Payne, J.P., Drewe, J.A. & Brown, A.M. Rescue of lethal subunits into functional K+ channels. Biophys J. 66, 179–190 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pascual, J.M., Shieh, C.-C., Kirch, G.E. & Brown, A.M. K+ pore structure revealed by reporter cysteines at inner and outer surfaces. Neuron 14, 1055–1083 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Krapivinsky, G. et al. The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K+ channel proteins. Nature 374, 135–141 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Kobayashi, T. et al. Molecular cloning of a mouse G-protein activated K+ channel (mGIRKI) and distinct distribution of three GIRK (GIRK1,2, and 3) in mouse brain. Biochem. Biophys. Res. Comm. 208, 1166–1173 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Hatten, M.E., Liem, R.K. & Mason, C.A. Weaver mouse cerebellar granule neurons fail to migrate on wild-type astroglial processes in vitro. J. Neurosci. 6, 2676–2683 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Roffler-Tartov, S. & Graybiel, A.M. The postnatal development of the dopamine containing innervation of dorsal and ventral striatum: Effects of the weaver gene. J. Neurosci. 7, 2364–2372 (1987).

    Google Scholar 

  36. Reeves, R.H., Crowley, M.R., Moseley, W.S. & Seldin, M.F. Comparison of interspecific to intersubspecific backcrosses demonstrates species and sex differences in recombination frequency on mouse chromosome 16. Mamm Genome 4, S223–229 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Current Protocols in Molecular Biology, vol. 1 (John Wiley & Son., New York, 1992).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patil, N., Cox, D., Bhat, D. et al. A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nat Genet 11, 126–129 (1995). https://doi.org/10.1038/ng1095-126

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1095-126

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing