Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The codon 72 polymorphic variants of p53 have markedly different apoptotic potential

Abstract

The gene TP53, encoding p53, has a common sequence polymorphism that results in either proline or arginine at amino-acid position 72. This polymorphism occurs in the proline-rich domain of p53, which is necessary for the protein to fully induce apoptosis. We found that in cell lines containing inducible versions of alleles encoding the Pro72 and Arg72 variants, and in cells with endogenous p53, the Arg72 variant induces apoptosis markedly better than does the Pro72 variant. Our data indicate that at least one source of this enhanced apoptotic potential is the greater ability of the Arg72 variant to localize to the mitochondria; this localization is accompanied by release of cytochrome c into the cytosol. These data indicate that the two polymorphic variants of p53 are functionally distinct, and these differences may influence cancer risk or treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Arg72 variant of p53 is a better inducer of apoptosis than is Pro72.
Figure 2: The Arg72 variant of p53 is a better inducer of apoptosis in cell lines with inducible and endogenous p53.
Figure 3: The Pro72 and Arg72 variants have similar transcriptional potential.
Figure 4: The Arg72 variant shows greater localization to the mitochondria after temperature shift and greater translocation of cytochrome c to the cytosol.
Figure 5: The Arg72 variant shows enhanced interaction with the mitochondrial proteins GRP75 and Hsp60 but not with the nuclear protein mSin3a.
Figure 6: The Arg72 variant shows greater interaction with the nuclear-export protein CRM1 and greater interaction with and ubiquitination by the E3 ubiquitin ligase MDM2.
Figure 7: Mitochondrial p53 is ubiquitinated.

Similar content being viewed by others

References

  1. el-Deiry, W.S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

    Article  CAS  Google Scholar 

  2. Deng, C., Zhang, P., Harper, J.W., Elledge, S.J. & Leder, P. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82, 675–684 (1995).

    Article  CAS  Google Scholar 

  3. Caelles, C., Helmberg, A. & Karin, M. p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature 370, 220–223 (1994).

    Article  CAS  Google Scholar 

  4. Wagner, A.J., Kokontis, J.M. & Hay, N. Myc-mediated apoptosis requires wild-type p53 in a manner independent of cell cycle arrest and the ability of p53 to induce p21waf1/cip1. Genes Dev. 8, 2817–2830 (1994).

    Article  CAS  Google Scholar 

  5. Koumenis, C. et al. Regulation of p53 by hypoxia: dissociation of transcriptional repression and apoptosis from p53-dependent transactivation. Mol. Cell. Biol. 21, 1297–1310 (2001).

    Article  CAS  Google Scholar 

  6. Haupt, Y., Rowan, S., Shaulian, E., Vousden, K.H. & Oren, M. Induction of apoptosis in HeLa cells by transactivation-deficient p53. Genes Dev. 9, 2170–2183 (1995).

    Article  CAS  Google Scholar 

  7. Walker, K.K. & Levine, A.J. Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc. Natl. Acad. Sci. USA 93, 15335–15340 (1996).

    Article  CAS  Google Scholar 

  8. Sakamuro, D., Sabbatini, P., White, E. & Prendergast, G.C. The polyproline region of p53 is required to activate apoptosis but not growth arrest. Oncogene 15, 887–898 (1997).

    Article  CAS  Google Scholar 

  9. Buchman, V.L., Chumakov, N.N., Ninkina, N.N., Samarina, O.P. & Georgiev, G.P. A variation in the structure of the protein-coding region of the human p53 gene. Gene 70, 245–252 (1988).

    Article  CAS  Google Scholar 

  10. Harris, N. et al. Molecular basis for heterogeneity of the human p53 protein. Mol Cell. Biol. 6, 4650–4656 (1986).

    Article  CAS  Google Scholar 

  11. Matlashewski, G.J. et al. Primary structure polymorphism at amino acid residue 72 of human p53. Mol. Cell. Biol. 7, 961–963 (1987).

    Article  CAS  Google Scholar 

  12. Sjalander, A., Birgander, R., Kivela, A. & Beckman, G. p53 polymorphisms and haplotypes in different ethnic groups. Hum. Hered. 45, 144–149 (1995).

    Article  CAS  Google Scholar 

  13. Beckman, G. et al. Is p53 polymorphism maintained by natural selection? Hum. Hered. 44, 266–270 (1994).

    Article  CAS  Google Scholar 

  14. Thomas, M. et al. Two polymorphic variants of wild-type p53 differ biochemically and biologically. Mol. Cell. Biol. 19, 1092–1100 (1999).

    Article  CAS  Google Scholar 

  15. Storey, A. et al. Role of a p53 polymorphism in the development of human papilloma-virus-associated cancer. Nature 393, 229–234 (1998).

    Article  CAS  Google Scholar 

  16. Marin, M.C. et al. A common polymorphism acts as an intragenic modifier of mutant p53 behavior. Nat. Genet. 25, 47–54 (2000).

    Article  CAS  Google Scholar 

  17. Pochampally, R. et al. Temperature-sensitive mutants of p53 homologs. Biochem. Biophys. Res. Commun. 279, 1001–1010 (2000).

    Article  CAS  Google Scholar 

  18. Wistuba, I.I., Gazdar, A.F. & Minna, J.D. Molecular genetics of small cell lung carcinoma. Seminars Oncol. 28, 3–13 (2001).

    Article  CAS  Google Scholar 

  19. Landers, J.E., Cassel, S.L. & George, D.L. Translational enhancement of mdm2 oncogene expression in human tumor cells containing a stabilized wild-type p53 protein. Cancer Res. 57, 3562–3568 (1997).

    CAS  PubMed  Google Scholar 

  20. Attardi, L.D. et al. PERP, an apoptosis-associated target of p53, is a novel member of the PMP-22/gas3 family. Genes Dev. 14, 704–718 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Marchenko, N.D., Zaika, A. & Moll, U.M. Death signal–induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J. Biol. Chem. 275, 16202–16212 (2000).

    Article  CAS  Google Scholar 

  22. Sansome, C., Zaika, A., Marchenko, N.D. & Moll, U.M. Hypoxia death stimulus induces translocation of p53 protein to mitochondria. Detection by immunofluorescence on whole cells. FEBS Lett. 488, 110–115 (2001).

    Article  CAS  Google Scholar 

  23. Pfanner, N. & Geissler, A. Versatility of the mitochondrial protein import machinery. Nat. Rev. Mol. Cell Biol. 2, 339–349 (2001).

    Article  CAS  Google Scholar 

  24. Zilfou, J.T., Hoffman, W.H., Sank, M., George, D.L. & Murphy, M. The corepressor mSin3a interacts with the proline-rich domain of p53 and protects p53 from proteasome-mediated degradation. Mol. Cell. Biol. 21, 3974–3985 (2001).

    Article  CAS  Google Scholar 

  25. Boyd, S.D., Tsai, K.Y. & Jacks, T. An intact HDM2 RING-finger domain is required for nuclear exclusion of p53. Nat. Cell. Biol. 2, 563–568 (2000).

    Article  CAS  Google Scholar 

  26. Geyer, R.K., Yu, Z.K. & Maki, C.G. The MDM2 RING-finger domain is required to promote p53 nuclear export. Nat. Cell. Biol. 2, 569–573 (2000).

    Article  CAS  Google Scholar 

  27. Chen, L., Marechal, V., Moreau, J., Levine, A.J. & Chen, J. Proteolytic cleavage of the mdm2 oncoprotein during apoptosis. J. Biol. Chem. 272, 22966–22973 (1997).

    Article  CAS  Google Scholar 

  28. Berger, M., Sionov, R.V., Levine, A.J. & Haupt, Y. A role for the polyproline domain of p53 in its regulation by MDM2. J. Biol. Chem. 276, 3785–3790 (2001).

    Article  CAS  Google Scholar 

  29. Hicke, L. Protein regulation by monoubiquitin. Nat. Rev. Mol. Cell Biol. 2, 195–201 (2001).

    Article  CAS  Google Scholar 

  30. Chen, G. et al. Nix and Nip3 form a subfamily of pro-apoptotic mitochondrial proteins. J. Biol. Chem. 274, 7–10 (1999).

    Article  CAS  Google Scholar 

  31. Daugas, E. et al. Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. FASEB J. 14, 729–739 (2000).

    Article  CAS  Google Scholar 

  32. Samali, A., Cai, J., Zhivotovsky, B., Jones, D.P. & Orrenius, S. Presence of a pre-apoptotic complex of pro-caspase-3, Hsp60 and Hsp10 in the mitochondrial fraction of Jurkat cells. EMBO J. 18, 2040–2048 (1999).

    Article  CAS  Google Scholar 

  33. Xanthoudakis, S. et al. Hsp60 accelerates the maturation of pro-caspase-3 by upstream activator proteases during apoptosis. EMBO J. 18, 2049–2056 (1999).

    Article  CAS  Google Scholar 

  34. Weston, A. et al. Determination of the allelic frequencies of an L-myc and a p53 polymorphism in human lung cancer. Carcinogenesis 15, 583–587 (1994).

    Article  CAS  Google Scholar 

  35. Birgander, R. et al. p53 polymorphisms and haplotypes in lung cancer. Carcinogenesis 16, 2233–2236 (1995).

    Article  CAS  Google Scholar 

  36. Rosenthal, A. et al. p53 codon 72 polymorphism and risk of cervical cancer in UK. Lancet 352, 871–872 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank J. Skipworth for technical assistance, A. Ganguly and C. Spittle for genotyping the melanoma and fibroblast cell lines and J. Boyd for confocal expertise. This work was supported by US Public Health Service National Cancer Institute grants to D.L.G. and M.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maureen Murphy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumont, P., Leu, JJ., Della Pietra, A. et al. The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet 33, 357–365 (2003). https://doi.org/10.1038/ng1093

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1093

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing