Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans

Abstract

Male embryonic mice with mutations in the X-linked aristaless-related homeobox gene (Arx) developed with small brains due to suppressed proliferation and regional deficiencies in the forebrain. These mice also showed aberrant migration and differentiation of interneurons containing γ-aminobutyric acid (GABAergic interneurons) in the ganglionic eminence and neocortex as well as abnormal testicular differentiation. These characteristics recapitulate some of the clinical features of X-linked lissencephaly with abnormal genitalia (XLAG) in humans. We found multiple loss-of-function mutations in ARX in individuals affected with XLAG and in some female relatives, and conclude that mutation of ARX causes XLAG. The present report is, to our knowledge, the first to use phenotypic analysis of a knockout mouse to identify a gene associated with an X-linked human brain malformation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genomic structure and targeted disruption of Arx, and appearance of the ArxX*Y mutant brain and testis.
Figure 2: Proliferation and movement of the neuroepithelial cells in the neocortex.
Figure 3: Regional deficiencies in thalamus and loss of nerve fiber tracts.
Figure 4: Expression of Arx in the interneurons of wildtype mice.
Figure 5: Expansion of medial ganglionic eminence domain, abnormal primary migration of GABAergic interneurons and localization of the GABAergic interneurons in the cortical plate of wildtype and ArxX*Y mutant mice.
Figure 6: Loss of interneurons positive for Npy in the striatum of wildtype and ArxX*Y mutant mice.
Figure 7: Expression of Arx and Arx in the testes and defects in the gonads of wildtype (a-e, g) and ArxX*Y mutant (f, h) mice.
Figure 8: ARX in individuals affected with XLAG and unaffected controls.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Pearlman, A.L., Faust, P.L., Hatten, M.E. & Brunstrom, J.E. New directions for neuronal migration. Curr. Opin. Neurobiol. 8, 45–54 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Leventer, R.J., Mills, P.L. & Dobyns, W.B. X-linked malformations of cortical development. Am. J. Med. Genet. 97, 213–220 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Lambert de Rouvroit, C. & Goffinet, A.M. Neuronal migration. Mech. Dev. 105, 47–56 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Reiner, O. et al. Isolation of a Miller–Dicker lissencephaly gene containing G protein β-subunit–like repeats. Nature 364, 717–721 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. des Portes, V. et al. A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heteropia and lissencephaly syndrome. Cell 92, 51–61 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Gleeson, J.G. et al. Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 92, 63–72 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Hong, S.E. et al. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat. Genet. 26, 93–96 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Dobyns, W.B. et al. Differences in the gyral pattern distinguish chromosome 17-linked and X-linked lissencephaly. Neurology 53, 270–277 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Pilz, D.T. et al. LIS1 and XLIS (DCX) mutations cause most classical lissencephaly, but different patterns of malformation. Hum. Mol. Genet. 7, 2029–2037 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Hirotsune, S. et al. Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nat. Genet. 19, 333–339 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Cahana, A. et al. Targeted mutagenesis of Lis1 disrupts cortical development and LIS1 homodimerization. Proc. Natl Acad. Sci. USA 98, 6429–6434 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. D'Arcangelo, G. et al. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374, 719–723 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Smith, D.S. et al. Regulation of cytoplasmic dynein behavior and microtubule organization by mammalian Lis1. Nat. Cell Biol. 2, 767–775 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Feng, Y. et al. LIS1 regulates CNS lamination by interacting with mNudE, a central component of the centrosome. Neuron 28, 665–679 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Flancis, F. et al. Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 23, 247–256 (1999).

    Article  Google Scholar 

  16. Gleeson, J.G., Lin, P.T., Flanagan, L.A. & Walsh, C.A. Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23, 257–271 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Hatten, M.E. Central nervous system. Neuronal migration. Ann. Rev. Neurosci. 22, 511–539 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Anderson, S., Mione, M., Yun, K. & Rubenstein, J.L. Differential origins of neocortical projection and local circuit neurons: role of Dlx genes in neocortical interneurogenesis. Cereb. Cortex 9, 646–654 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Wilson, S.W. & Rubenstein, J.L.R. Induction and dorsoventral patterning of the telencephalon. Neuron 28, 641–651 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Parnavelas, J.G. The origin and migration of cortical neurones: new vistas. Trends Neurosci. 23, 126–131 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Wichterle, H., Turnbull, D.H., Nery, S., Fishell, G. & Alvarez-Buylla, A. In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development 128, 3759–3771 (2001).

    CAS  PubMed  Google Scholar 

  22. Marin, O., Yaron, A., Bagri, A., Tessier-Lavigne, M. & Rubenstein, J.L.R. Sorting of striatal and cortical interneurons regulated by semaphorin–neuropilin interactions. Science 293, 872–875 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Denaxa, M., Chan, C.-H., Schachner, M., Parnavelas, J.G. & Karagogeos, D. The adhesion molecule TAG-1 mediates the migration of cortical interneurons from the ganglionic eminence along the corticofugal fiber system. Development 128, 4635–4644 (2001).

    CAS  PubMed  Google Scholar 

  24. Anderson, S.A., Eisenstat, D.D., Shi, L. & Rubenstein, J.L.R. Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278, 474–476 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Anderson, S.A. et al. Mutations of the homeobox genes Dlx-1 and Dlx-2 disrupt the striatal subventricular zone and differentiation of late born striatal neurons. Neuron 19, 27–37 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Sussel, L., Marin, O., Kimura, S. & Rubenstein, J.L.R. Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development 126, 3359–3370 (1999).

    CAS  PubMed  Google Scholar 

  27. Anderson, S.A., Marin, O., Horn, C., Jennings, K. & Rubenstein, J.L.R. Distinct cortical migrations from the medial and lateral ganglionic eminences. Development 128, 353–363 (2001).

    CAS  PubMed  Google Scholar 

  28. Berry-Kravis, E. & Israel, J. X-linked pachygyria and agenesis of the corpus callosum: evidence for an X chromosome lissencephaly locus. Ann. Neurol. 25, 90–92 (1994).

    Google Scholar 

  29. Dobyns, W.B., Berry-Kravis, E., Havernick, N.J., Holden, K.R. & Viskochil, D. X-linked lissencephaly with absent corpus callosum and ambiguous genitalia. Am. J. Med. Genet. 86, 331–337 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Ogata, T., Matsuo, N., Hiraoka, N. & Hata, J. X-linked lissencephaly with ambiguous genitalia: delineation of further case. Am. J. Med. Genet. 94, 174–176 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Bonneau, D. et al. X-linked lissencephaly with absent corpus callosum and ambiguous genitalia (XLAG): clinical, magnetic resonance imaging, and neuropathological findings. Ann. Neurol. 51, 340–349 (2002).

    Article  PubMed  Google Scholar 

  32. Miura, H., Yanazawa, M., Kato, K. & Kitamura, K. Expression of a novel aristaless related homeobox gene 'Arx' in the vertebrate telencephalon, diencephalon and floor plate. Mech. Dev. 65, 99–109 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Strφmme, P. et al. Mutations in the human ortholog of Aristaless cause X-linked mental retardation and epilepsy. Nat. Genet. 30, 441–445 (2002).

    Article  Google Scholar 

  34. Bienvenu, T. et al. ARX, a novel Prd-class-homeobox gene highly expressed in the telencephalon, is mutated in X-linked mental retardation. Hum. Mol. Genet. 11, 981–991 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Marin, O., Anderson, S.A. & Rubenstein, J.L.R. Origin and molecular specification of striatal interneuron. J. Neurosci. 20, 6063–6076 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brais, B. et al. Short GCG expansions in the PABP2 gene cause oculpharyngeal muscular dystrophy. Nat. Genet. 18, 164–167 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Brown, L.Y. et al. Holoprosencephaly due to mutations in ZIC2: alanine tract expansion mutations may be caused by parental somatic recombination. Hum. Mol. Genet. 10, 791–796 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Zoghbi, H.Y. & Orr, H.T. Glutamine repeats and neurodegeneration. Ann. Rev. Neurosci. 23, 217–247 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Lectinic, K., Zoncu, R. & Rakic, P. Origin of GABAergic neurons in the human neocortex. Nature 417, 645–649 (2002).

    Article  Google Scholar 

  40. Capel, B. The battle of the sexes. Mech. Dev. 92, 89–103 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Siiteri, P.K. & Wilson, J.D. Testosterone formation and metabolism during male sexual differentiation in the human embryo. J. Clin. Endocrinol. Metab. 38, 113–125 (1974).

    Article  CAS  PubMed  Google Scholar 

  42. Morohashi, K. et al. Activation of CYP11A and CYP11B gene promoters by the steroidogenic cell-specific transcription factor, Ad4BP. Mol. Endocrinol. 7, 1196–1204 (1993).

    CAS  PubMed  Google Scholar 

  43. Nomura, M. et al. Adrenocortical and gonadal expression of the mammalian Ftz-F1 gene encoding Ad4BP/SF-1 is independent of pituitary control. J. Biochem. 124, 217–224 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Kitamura, K., Miura, H., Yanazawa, M., Miyasaka, T. & Kato, K. Expression patterns of Brx1 (Rieg gene), Sonic hedgehog, Nkx2.2, Dlx1 and Arx during zona limitans intrathalamica and embryonic ventral lateral geniculate nuclear formation. Mech. Dev. 67, 83–96 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Kitamura, K. et al. Mouse Pitx2 deficiency leads to anomalies of the ventral body wall, heart, extra- and periocular mesoderm and right pulmonary isomerism. Development 126, 5749–5758 (1999).

    CAS  PubMed  Google Scholar 

  46. Kawabe, K. et al. Dax-1 as one of the target genes of Ad4BP/SF-1. Mol. Endocrinol. 13, 1267–1284 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank L.R. Rubenstein for providing Titf1; M. Price for Dlx1; V. Pachnis for Lhx6; J. Mason for Wntb8; S. Retaux for Lhx9; B. Condie, C. Gerfen and Y. Yanagawa for Gad1; I. Mason for antibody against Hsd3b1; Y. Motegi, Y. Nakahara, A. Suehiro, T. Akiyama, A. Miyake, A. Oshida and A. Ohwaki for technical support; Y. Arimatsu, H. Takahashi, S. Tanaka and B. Capel for helpful discussion; H. Nakamura and H. Okamoto for their encouragement; and the parents of children with XLAG who were studied. This work was supported in part by grants-in-aid for scientific research to K.M. from the Ministry of Education, Science, Sports, and Culture of Japan and by a grant from the US National Institutes of Health to W.B.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunio Kitamura.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitamura, K., Yanazawa, M., Sugiyama, N. et al. Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet 32, 359–369 (2002). https://doi.org/10.1038/ng1009

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1009

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing