Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Peg1/Mest imprinted gene on chromosome 6 identified by cDNA subtraction hybridization

Abstract

Parthenogenesis in the mouse is embryonic lethal partly because of imprinted genes that are expressed only from the paternal genome. In a systematic screen using subtraction hybridization between cDNAs from normal and parthenogenetic embryos, we initially identified two apparently novel imprinted genes, Peg1 and Peg3. Peg1 (paternally expressed gene 1) or Mest, the first imprinted gene found on the mouse chromosome 6, may contribute to the lethality of parthenogenones and of embryos with a maternal duplication for the proximal chromosome 6. Peg1/Mest is widely expressed in mesodermal tissues and belongs to the alpha/beta hydrolase fold family. A similar approach with androgenones can be used to identify imprinted genes that are expressed from the maternal genome only.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kaufman, M.H., Barton, S.C. & Surani, M.A. Normal postimplantation development of mouse parthenogenetic embryos to the forelimb bud stage. Nature 265, 53–55 (1977).

    Article  CAS  PubMed  Google Scholar 

  2. Nagy, A., Paldi, A., Dezso, L., Varg, L. & Magyar, A. A prenatal fate of parthenogenetic cells in mouse aggregation chimeras. Development 101, 67–71 (1987).

    CAS  PubMed  Google Scholar 

  3. Nagy, A., Sass, M. & Markkula, M. Systematic non-uniform distribution of parthenogenetic cells in adult mouse chimaeras. Development 106, 321–324 (1989).

    CAS  PubMed  Google Scholar 

  4. Fundele, R., Norris, M.L., Barton, S.C., Reik, W. & Surani, M.A. Systematic elimination of parthenogenetic cells in mouse chimaeras. Development 106, 20–35 (1989).

    Google Scholar 

  5. Fundele, R.H. & Surani, M.A. Experimental embryological analysis of genetic imprinting in the mouse. Dev. Genet. 15, 515–522 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Surani, M.A.H., Barton, S.C. & Norris, M.L. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308, 548–550 (1984).

    Article  CAS  PubMed  Google Scholar 

  7. McGrath, J. & Solter, D. Completion of mouse embryogenesis requires both the materal and paternal genomes. Cell 37, 179–183 (1984).

    Article  CAS  PubMed  Google Scholar 

  8. Mann, J.R. & Lovell-Badge, R.H. Inviability of parthenogenones is determined by pronuclei, not egg cytoplasm. Nature 310, 66–67 (1984).

    Article  CAS  PubMed  Google Scholar 

  9. Surani, M.A., Genomic Imprinting: control of gene expression by epigenetic inheritance. Curr. Opin. Cell Biol. 6, 390–395 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Solter, D. Differential imprinting and expression of maternal and paternal genomes. Annu. Rev. Genet. 22, 127–146 (1988).

    Article  CAS  PubMed  Google Scholar 

  11. Cattanach, B.M. & Beechey, C.V. Autosomal and X-chromosome imprinting. Development Suppl., 63–72 (1990).

  12. Reik, W. Genomic imprinting and genetic disorders in man. Trends Genet. 5, 331–336 (1989).

    Article  CAS  PubMed  Google Scholar 

  13. Efstratiadis, A. Parental imprinting of autosomal mammalian genes. Curr. Opin. Genet. Dev. 4, 265–280 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. DeChiara, T.M., Robertson, E.J. & Efstratiadis, A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64, 849–859 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Leff, S.E. et al. Maternal imprinting of the mouse Snrpn gene and conserved linkage homology with the human Prader-Willi syndrome region. Nature Genet. 2, 259–264 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Bartolomei, M.S., Zemei, S. & Tilghman, S.M. Parental imprinting of the mouse H19 gene. Nature 351, 153–155 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Barlow, D.P., Stoger, R., Herrmann, B.G., Saito, K. & Schweifer, K.S. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 349, 84–87 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Guillemot, F. et al. Genomic imprinting of Mash72, a mouse gene required fortrophoblast development. Nature Genet. 9, 235–241 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Beechey, C.V. & Cattanach, B.M. Genetic imprinting map. Mouse Genome 93, 89–91 (1995).

    Google Scholar 

  20. Ferguson-Smith, A.C., Cattanach, B.M., Barton, S.C., Beechey, C.V. & Surani, M.A. Molecular and embryological investigations of parental imprinting on mouse chromosome 7. Nature 351, 667–670 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Ko, M.S., Ko, S.B., Takahashi, N., Nishiguchi, K. & Abe, K. Unbiased amplification of a highly complex mixture of DNA fragments by ‘lone-linker’-tagged PCR. Nucl. Acids Res. 18, 4293–4294 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Akowithz, A. & Manuelidis, L. A novel cDNA/PCR strategy for efficient cloning of small amounts of undefined RNA. Gene 81, 295–306 (1989).

    Article  Google Scholar 

  23. Gubbay, J. et al. Inverted repeat structure of the Sry locus in mice. Proc. natn. Acad. Sci. U.S.A. 89, 7953–7957 (1992).

    Article  CAS  Google Scholar 

  24. Walsh, C. et al. The non-viability of uniparental mouse conceptuses correlates with the loss of the products of imprinted genes. Mech. Dev. 46, 55–62 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Villar, A.J. & Pedersen, R.A. Parental imprinting of the Mas protooncogene in mouse. Nature Genet. 8, 373–379 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Sado, T., Nakajima, N., Tada, M. & Takagi, N. A novel mesoderm-specific cDNA isolated from a mouse embryonal carcinoma cell line. Devel. Growth Different. 35, 551–560 (1993).

    Article  CAS  Google Scholar 

  27. Mouse Genome 93, 283 (1995).

  28. Ollis, D.L. et al. The alpha/beta hydrolase fold. Protein Engineering, 5, 197–211 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Arand, M. et al. Sequence similarity of mammalian epoxide hydrolases to the bacterial haloalkane dehalogenase and other related proteins. Implication for the potential catalytic mechanism of enzymatic epoxide hydrolysis. FEBS Lett. 338, 251–256 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Spotila, L.D., Sereda, L. & Prockop, D.J. Partial isodisomy for maternal chromosome 7 and short stature in an individual with a mutation at the COLIA2 locus. Am. J. hum Genet. 51, 1396–1405 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Oesch, F. Mammalian epoxide hydrolases: Inducible enzymes catalysing the inactivation of carcinogenenic and cytotoxic metabolites derived from aromatic olefinic compounds. Xenobiotica 3, 1–51 (1973).

    Article  Google Scholar 

  32. Beetham, J.K. et al. Gene evolution of epoxide hydrolases and recommended nomenclature. DNA cell Biol. 14, 61–71 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Halarnkar, P.P. & Schooley, D.A. Reversed-phase liquid chromatographic separation of juvenile hormone and its metabolites, and its application for an in vivo juvenile hormone catabolism study in Manduca sexta. Analyt. Biochem. 188, 394–397 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Barton, S.C., Ferguson-Smith, A.C., Fundele, R. & Surani, M.A. Influence of paternally imprinted genes on development. Development 113, 679–688 (1991).

    CAS  PubMed  Google Scholar 

  35. Kay, G.F. et al. Expression of Xist during mouse development suggests a role in the initiation of X chromosome inactivation. Cell 72, 171–182 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Chomczynski, P.A. Reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. BioTechniques 15, 532–536 (1993).

    CAS  PubMed  Google Scholar 

  37. Wilkinson, D.G. & Green, J. In situ hybridisation and the three dimensional reconstruction of serial sections. Postimplantation Mammalian Embryo. (eds Copp, A.J. & Cockroft, D.J.) 155–171 (Oxford IRL, Oxford, 1990).

    Google Scholar 

  38. Pearson, W.R. & Lipman, D.J. Improved tools for biological sequence comparison. Proc. natn. Acad. Sci. U.S.A. 85, 2444–2448 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaneko-Ishino, T., Kuroiwa, Y., Miyoshi, N. et al. Peg1/Mest imprinted gene on chromosome 6 identified by cDNA subtraction hybridization. Nat Genet 11, 52–59 (1995). https://doi.org/10.1038/ng0995-52

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0995-52

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing