Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus

Abstract

A locus for familial melanoma, MLM, has been mapped within the same interval on chromosome 9p21 as the gene for a putative cell cycle regulator, p16INK4 (CDKN2) MTS1. This gene is homozygously deleted from many tumour cell lines including melanomas, suggesting that CDKN2 is a good candidate for MLM. We have analysed CDKN2 coding sequences in pedigrees segregating 9p melanoma susceptibility and 38 other melanoma-prone families. In only two families were potential predisposing mutations identified. No evidence was found for heterozygous deletions of CDKN2 in the germline of melanoma-prone individuals. The low frequency of potential predisposing mutations detected suggests that either the majority of mutations fall outside the CDKN2 coding sequence or that CDKN2 is not MLM.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cannon-Albright, L.A. et al. Assignment of a locus for familial melanoma MLM, to chromosome 9p13–22. Science 258, 1148–1152 (1992).

    Article  CAS  Google Scholar 

  2. Nancarrow, D.J. et al. Confirmation of chromosome 9p linkage in familial melanoma. Am. J. hum. Genet. 53, 936–942 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Gruis, N.A. et al. Linkage analysis in Dutch familial atypical multiple mole-melanoma (FAMMM) syndrome families. Effect on naevus count. Melanoma Res. 3, 271–277 (1993).

    CAS  PubMed  Google Scholar 

  4. Goldstein, A.M. et al. Linkage of cutaneous malignant melanoma/dysplastic nevi to chromosome 9p, and evidence for genetic heterogeneity. Am. J. hum. Genet. 54, 489–496 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Cannon-Albright, L.A. et al. Localization of the 9p melanoma susceptibility locus to a 2cM region between D9S736 and D9S171. Genomics (in the press).

  6. Knudson, A.G. Mutation and cancer: statistical study of Retinoblastoma. Proc. natn. Acad. Sci. U.S.A. 68, 820–823 (1971).

    Article  Google Scholar 

  7. Weaver-Feldhaus, J. et al. Localization of a putative tumor suppressor gene using homozygous deletion breakpoints in melanomas. Proc. natn. Acad. Sci. U.S.A. 91, 7563–7567 (1994).

    Article  CAS  Google Scholar 

  8. Kamb, A. et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science 264, 436 (1994).

    Article  CAS  Google Scholar 

  9. Nobori, T. et al. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 368, 753 (1994).

    Article  CAS  Google Scholar 

  10. Serrano, M., Hannon, G.J. & Beach, D. A new regulatory motif in cell cycle control causing specific inhibition of cyclin D/CDK4. Nature 366, 704, (1993).

    Article  CAS  Google Scholar 

  11. Sherr, C.J. Mammalian G1 cyclins. Cell 73, 1059–1065 (1993).

    Article  CAS  Google Scholar 

  12. Anderson, D.E. & Badzioch, M.D. Hereditary cutaneous malignant melanoma: A 20-year family update. Anticancer Res. 11, 433–438 (1991).

    CAS  PubMed  Google Scholar 

  13. Aitken, J.F. et al. Heterogeneity of melanoma risk in families of melanoma patients. Am. J. Epidem. (in the press).

  14. Fountain, J.W. et al. Homozygous deletions within human chromosome band 9p21 in melanoma. Proc. natn. Acad. Sci. U.S.A. 89, 10557–10561 (1992).

    Article  CAS  Google Scholar 

  15. Knudson, A.G. All in the (cancer) family. Nature Genet. 5, 103–104 (1993).

    Article  CAS  Google Scholar 

  16. Harris, C.C. p53: at the cross roads of molecular carcinogenesis and risk assessment. Science 262, 1980 (1993).

    Article  CAS  Google Scholar 

  17. Goldstein, A.M. et al. Further evidence for a locus for cutaneous malignant melanoma-dysplastic nevus (CMM/DN) on chromosome 1p, and evidence for genetic heterogeneity. Am. J. hum. Genet. 52, 537–550 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bale, S.J. et al. Mapping the gene for hereditary cutaneous malignant melanoma-dysplastic naevus to chromosome 1p. New Engl. J. Med. 320, 1367–1372 (1989).

    Article  CAS  Google Scholar 

  19. Cannon-Albright, L.A. et al. Evidence against the reported linkage to the cutaneous melanoma-dysplastic naevus syndrome locus to chromosome 1p36. Am. J. hum. Genet. 46, 912–918 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gruis, N.A., Bergman, W. & Frants, R.R. Locus for susceptibility to melanoma on chromosome 1p. New Engl. J. Med. 322, 853–854 (1990).

    CAS  PubMed  Google Scholar 

  21. Kefford, R.F., Salmon, J., Shaw, H.M., Donald, J.A. & McCarthy, W.H. Hereditary melanoma in Australia: variable association with dysplastic naevi and absence of genetic linkage to chromosome 1p. Cancer Genet. Cytogenet. 51, 45–55 (1991).

    Article  CAS  Google Scholar 

  22. Nancarrow, D.J. et al. Exclusion of the familial melanoma locus (MLM) from the PND/D1S47 and LMYC regions of chromosome arm 1p in 7 Australian pedigrees. Genomics 12, 18–25 (1992).

    Article  CAS  Google Scholar 

  23. van Haeringen, A. et al. Exclusion of the dysplastic naevus syndrome (DNS) locus from the short arm of chromosome 1 by linkage studies in Dutch families. Genomics 5, 61–64 (1989).

    Article  CAS  Google Scholar 

  24. Cairns, P. et al. Rate of p16 (MTS1) mutations found in primary tumors with 9p loss. Science 265, 415–416 (1994).

    Article  CAS  Google Scholar 

  25. Spruck, C.H. III et al. p16 gene in uncultured tumours. Nature 370, 183–184 (1994).

    Article  Google Scholar 

  26. Takahiro, M. et al. Frequent somatic mutation of the MTS1/CDK4I (multiple tumor suppressor/cyclin-dependent kinase 4 inhibitor) gene in esophageal squamous cell carcinoma. Cancer Res. 54, 3396–3397 (1994).

    Google Scholar 

  27. Kamb, A. et al. Response to rate of p16 (MTS1) “Rate of mutations found in primary tumors with 9p loss”. Science 265, 416–417 (1994).

    Article  CAS  Google Scholar 

  28. Bergman, W., Palan, A. & Went, L.N. Clinical and genetic studies in six Dutch kindreds with Dysplastic Naevus Syndrome. Ann. hum. Genet. 50, 249–258 (1986).

    Article  CAS  Google Scholar 

  29. Cai, S.P. et al. Two novel beta-thalassemia mutations in the 5′ and 3′ noncoding regions of the beta-globin gene. Blood 79, 1342–1346 (1992).

    CAS  PubMed  Google Scholar 

  30. Randall, T. Triplet repeat mutations: amplification within pedigrees generates three human diseases. J. Am. med. Assoc. 269, 558&562 (1993).

    Article  CAS  Google Scholar 

  31. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular cloning: a laboratory manual (Cold Spring Harbor Laboratory Press, Plainview, New York, 1989).

    Google Scholar 

  32. Miki, Y. et al. Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. Cancer Res. 52, 643–645 (1992).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamb, A., Shattuck-Eidens, D., Eeles, R. et al. Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nat Genet 8, 22–26 (1994). https://doi.org/10.1038/ng0994-22

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0994-22

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing