Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Somatic mutation of the MEN1 gene in parathyroid tumours

Abstract

Primary hyperparathyroidism is a common disorder with an annual incidence of approximately 0.5 in 1,000 (ref. 1). In more than 95% of cases, the disease is caused by sporadic parathyroid adenoma or sporadic hyperplasia. Some cases are caused by inherited syndromes, such as multiple endocrine neoplasia type 1 (MEN1; ref. 2). In most cases, the molecular basis of parathyroid neoplasia is unknown. Parathyroid adenomas are usually monoclonal3,4, suggesting that one important step in tumour development is a mutation in a progenitor cell. Approximately 30% of sporadic parathyroid tumours show loss of heterozygosity (LOH) for polymorphic markers on 11q13, the site of the MEN1 tumour suppressor gene4–8. This raises the question of whether such sporadic parathyroid tumours are caused by sequential inactivation of both alleles of the MEN1 gene9. We recently cloned the MEN1 gene and identified MEN1 germline mutations in fourteen of fifteen kindreds with familial MEN1 (ref. 10). We have studied parathyroid tumours not associated with MEN1 to determine whether somatic mutations in the MEN1 gene are present. Among 33 tumours we found somatic MEN1 gene mutation in 7, while the corresponding MEN1 germline sequence was normal in each patient. All tumours with MEN1 gene mutation showed LOH on 11q13, making the tumour cells hemi- or homozygous for the mutant allele. Thus, somatic MEN1 gene mutation contributes to tumorigenesis in a substantial number of parathyroid tumours not associated with the MEN1 syndrome.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Heath, H., Hodgson, S.F. & Kennedy, M.A. Primary hyperparathyroidism: incidence, morbidity, and potential economic impact in a community. N. Engl. J. Med. 302, 189–193 (1980).

    Article  Google Scholar 

  2. Metz, D.C. et al. Multiple endocrine neoplasia type I: clinical features and management, in The Parathyroids: Basic and Clinical Concepts (eds Bilezikian, J.P., Marcus, R. & Levine, M.A.) 591–646 Raven, New York,(1994).

    Google Scholar 

  3. Arnold, A. Molecular mechanisms of parathyroid neoplasia. Endocrinol. Metab. Clin. North Am. 23, 93–107 (1994).

    Article  CAS  Google Scholar 

  4. Friedman, E. et al. Clonality of parathyroid tumors in familial mutiple endocrine neoplasia type 1. N. Engl. J. Med. 321, 213–218 (1989).

    Article  CAS  Google Scholar 

  5. Larsson, C., Skogseid, B., Oberg, K., Nakamura, Y. & Nordenskjold, M. Multiple endocrine neoplasia type 1 gene maps to chromosome 11 and is lost in insulinomas. Nature 332, 85–87 (1988).

    Article  CAS  Google Scholar 

  6. Friedman, E. et al. Allelic loss from chromosome 11 in parathyroid tumors. Cancer Res. 52, 6804–6809 (1992).

    CAS  PubMed  Google Scholar 

  7. Bystrom, C. et al. Localization of the MEN 1 gene to a small region within chromosome 11q13 by deletion mapping in tumors. Proc. Natl. Acad. Sci. USA 87, 1968–1972 (1990).

    Article  CAS  Google Scholar 

  8. Tahara, H., Smith, A.P., Gas, R.D., Cryns, V.L. & Arnold, A. Genomic localization of novel candidate tumor suppressor gene loci in human parathyroid adenomas. Cancer Res. 56, 599–605 (1996).

    CAS  PubMed  Google Scholar 

  9. Knudson, A.G., Mutation and cancer: statistical study of retinoblastoma. Proc. Natl. Acad. Sci. USA 68, 820–823 (1971).

    Article  Google Scholar 

  10. Chandrasekharappa, S.C. et al. Positional cloning of the gene for multiple endocrine neoplasia type 1. Science 276, 404–407 (1997).

    Article  CAS  Google Scholar 

  11. Agarwal, S.K. et al. Germline mutations of the MEN1 gene in familial multiple endocrine neoplasia type 1 and related states. Hum. Mol. Genet. 7, 1169–1175 (1997).

    Article  Google Scholar 

  12. Tahara, H., Smith, A.P., Gaz, R.D. & Arnold, A. Loss of chromosome arm 9p DNA and analysis of the p16 and p15 cyclin-dependent kinase inhibitor genes in human parathyroid adenomas. J. Clin. Endocrinol. Metab. 81, 3663–3667 (1996).

    CAS  PubMed  Google Scholar 

  13. Thakker, R.V. et al. Association of parathyroid tumors in multiple endocrine neoplasia type 1 with loss of alleles on chromosome 11. N. Engl. J. Med. 321, 218–224 (1989).

    Article  CAS  Google Scholar 

  14. Lubensky, I.A. et al. Allelic deletions on chromosome 11q13 in multiple tumors from individual MEN I patients. Cancer Res. 56, 5272–5278 (1996).

    CAS  PubMed  Google Scholar 

  15. Emmert-Buck, M.R. et al. Localization of the MEN1 gene based on tumor LOH analysis. Cancer Res. 57, 1855–1858 (1997).

    CAS  PubMed  Google Scholar 

  16. Bright, R.K. et al. Generation and genetic characterization of immortal human prostate epithelial cell lines derived from primary cancer specimens. Cancer Res. 57, 995–1002 (1997).

    CAS  PubMed  Google Scholar 

  17. Merlo, A. et al. 5' CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nature Med. 1, 686–692 (1995).

    Article  CAS  Google Scholar 

  18. Herman, J.G. et al. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc. Natl. Acad. Sci. USA 91, 9700–9704 (1994).

    Article  CAS  Google Scholar 

  19. Pausova, Z. et al. Role of the RET proto-oncogene in sporadic hyperparathyroidism and in hyperparathyroidism of multiple endocrine neoplasia type 2. J. Clin. Endocrinol. Metab. 81, 2711–2718 (1996).

    CAS  PubMed  Google Scholar 

  20. Hsi, E.D., Zukerberg, L.R., Yang, W.I. & Arnold, A. Cyclin D1/PRAD1 expression in parathyroid adenomas: an immunohistochemical study. J. Clin. Endocrinol. Metab. 81, 1736–1739 (1996).

    CAS  PubMed  Google Scholar 

  21. Cryns, V.L. et al. Loss of the retinoblastoma tumor-suppressor gene in parathyroid carcinoma. N. Engl. J. Med. 330, 757–761 (1994).

    Article  CAS  Google Scholar 

  22. Dotzenrath, C. et al. Allelic loss of the retinoblastoma tumor suppressor gene: a marker for aggressive parathyroid tumors? J. Clin. Endocrinol. Metab. 81, 3194–3196 (1996).

    Article  CAS  Google Scholar 

  23. Pearce, S.H. et al. Loss of heterozygosity studies at the retinoblastoma and breast cancer susceptibility (BRCA2) loci in pituitary, parathyroid, pancreatic and carcinoid tumours. Clin. Endocrinol. 45, 195–200 (1996).

    Article  CAS  Google Scholar 

  24. Cryns, V.L., Rubio, M.P., Thor, A.D., Louis, D.N. & Arnold, A. p53 abnormalities in human parathyroid carcinoma. J. Clin. Endocrinol. Metab. 78, 1320–1324 (1994).

    CAS  PubMed  Google Scholar 

  25. Debelenko, L.V. et al. Allelic deletions on chromosome 11q13 in MEN 1-associated and sporadic gastrinomas and pancreatic endocrine tissues. Cancer Res. 57, 2238–2243 (1997).

    CAS  Google Scholar 

  26. Bates, A.S. et al. Alellic deletion in pituitary adenomas reflects aggressive bilogical activity and has potential value as a prognostic marker. J. Clin. Endocrinol. Metab. 82, 818–824 (1997).

    CAS  PubMed  Google Scholar 

  27. Jakobovitz, O. et al. Carcinoid tumors frequently display genetic abnormalities involving chromosome 11.7. J. Clin. Endocrinol. Metab. 81, 3164–3167 (1996).

    CAS  Google Scholar 

  28. Matsuo, K., Tang, S.-H. & Fagin, J.A. Allelotype of human thyroid tumors: loss of chromosome 11q13 sequences in follicular neoplasms. Mol. Endocrinol. 5, 1873–1879 (1997).

    Article  Google Scholar 

  29. lida, A. et al. Allelic loss of heterozygosity (LOH) on chromosome band 11q13 in aldosterone-producing adrenal tumors. Genes Chromosomes Cancer 12, 73–75 (1995).

    Article  Google Scholar 

  30. Chomczynski, P. & Mackey, K. Substitution of chloroform by bromo-chloropropane in the single-step method of RNA isolation. Ann. Biochem. 225, 163–164 (1995).

    Article  CAS  Google Scholar 

  31. Fain, P.R., Kort, E.N., Yousry, C., James, M.R. & Litt, M. A high resolution CEPH crossover mapping panel and integrated map of chromosome 11.Hum. Mol. Genet. 5, 1631–1636 (1996).

    Article  CAS  Google Scholar 

  32. Manickam, P. et al. Eighteen new polymorphic markers in the multiple endocrine neoplasia type 1 (MEN1) region. Hum. Genet.(in press).

  33. Sarkar, G., Yoon, H.-S. & Sommer, S.S. Dideoxy fingerprinting (ddF): a rapid and efficient screen for the presence of mutations. Genomics 13, 441–443 (1992).

    Article  CAS  Google Scholar 

  34. Haliassos, A. et al. Detection of minority point mutations by modified PCR technique: a new approach for a sensitive diagnosis of tumor-progression markers. Nud. Acids Res. 17, 8093–8099 (1989).

    Article  CAS  Google Scholar 

  35. Beaudet, A.L. & Tsui, L. A suggested nomenclature for designating mutations.Hum. Mutat. 2, 245–248 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Marx.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heppner, C., Kester, M., Agarwal, S. et al. Somatic mutation of the MEN1 gene in parathyroid tumours. Nat Genet 16, 375–378 (1997). https://doi.org/10.1038/ng0897-375

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0897-375

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing