Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

X–linked anhidrotic (hypohidrotic) ectodermal dysplasia is caused by mutation in a novel transmembrane protein

Abstract

Ectodermal dysplasias comprise over 150 syndromes of unknown pathogenesis. X–linked anhidrotic ectodermal dysplasia (EDA) is characterized by abnormal hair, teeth and sweat glands. We now describe the positional cloning of the gene mutated in EDA. Two exons, separated by a 200–kilobase intron, encode a predicted 135–residue transmembrane protein. The gene is disrupted in six patients with X;autosome translocations or submicroscopic deletions; nine patients had point mutations. The gene is expressed in keratinocytes, hair follicles, and sweat glands, and in other adult and fetal tissues. The predicted EDA protein may belong to a novel class with a role in epithelial–mesenchymal signalling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Darwin, C. The variation of animals and plants under domestication. 2nd edn. Vol II, 319. (John Murray, London, 1875).

    Google Scholar 

  2. McKusick, V.A., Mendelian in heritance in Man. 11th edn. (Johns Hopkins University Press, Baltimore, 1994).

    Google Scholar 

  3. Freire-Maia, N. & Pinheiro, M. Ectodermal dysplasias: a clinical and genetic study. (Alan R. Liss, New York, 1984).

  4. Freire-Maia, N. & Pinheiro, M. Ectodermal dysplasias: a clinical classification and a causal review. Am. J. Med. Genet. 53, 153–162 (1994).

    Article  Google Scholar 

  5. Reed, W.B., Lopez, D.A. & Landing, B. Clinical spectrum of anhidrotic ectodermal dysplasia. Arch. Derm. 102, 134–143 (1970).

    Article  CAS  Google Scholar 

  6. Kerr, C.B., Wells, R.S. & Cooper, K.E. Gene effect in carriers of anhidrotic ectodermal dysplasia. J. Med. Genet. 3, 169–176 (1966).

    Article  CAS  Google Scholar 

  7. Kolvraa, S. et al. Close linkage between X-linked ectodermal dysplasia and a cloned DNA sequence detecting a two allele restriction fragment lenght polymorphism in the region Xp11-q12. Hum. Genet. 74, 284–287

  8. MacDermot, K.D., Winter, R.M. & Malcolm, S. Gene localization of X-linked hypohidrotic ectodermal dysplasia (C-S-T syndrome). Hum. Genet. 74, 172–173 (1986).

    Article  CAS  Google Scholar 

  9. Clarke, A. et al. X-linked hypohidrotic ectodermal dysplasia: DNA probe linkage analysis and gene localization. Hum. Genet. 75, 378–380 (1987).

    Article  CAS  Google Scholar 

  10. Hanauer, A. et al. Genetic mapping of anhidrotic ectodermal dysplasia: DXS159, a closely linked proximal marker. Hum. Genet. 80, 177–180 (1988).

    Article  CAS  Google Scholar 

  11. Zonana, J. et al. X-linked hypohidrotic ectodermal dysplasia: localization within the region Xq11-21.1 by linkage analysis and implications for carrier detection and prenatal diagnostics. Am. J. Hum. Genet. 43, 75–85 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Zonana, J. et al. High resolution mapping of the X-linked hypohidrotic ectodermal dysplasia locus. Am. J. Hum. Genet. 51, 1036–1046 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Turleau, C. et al. X-linked hypohidrotic ectodermal dysplasia and t(X;12) in a female. Clin. Genet. 35, 462–466 (1989).

    Article  CAS  Google Scholar 

  14. Limon, J. et al. X-linked anhidrotic ectodermal dysplasia and de novo t(X;1) in afemale. Hum. Genet. 87, 338–340 (1991).

    Article  CAS  Google Scholar 

  15. Zonana, J. Hypohidrotic (anhidrotic) ectodermal dysplasia: Molecular genetic research and its clinical applications. Semin. Dermatol. 12, 241–246 (1993).

    CAS  PubMed  Google Scholar 

  16. Thomas, N.S.T. et al. Characterisation of molecular DNA rearrangements within the Xq12-q13.1 region, in three patients with X-linked hypohidrotic ectodermal dysplasia (EDA). Hum. Mol. Genet. 10, 1679–1685 (1993).

    Article  Google Scholar 

  17. Kere, J. et al. Anhidrotic ectodermal dysplasia gene region cloned in yeast artificial chromosomes. Genomics 16, 305–310 (1993).

    Article  CAS  Google Scholar 

  18. Srivastava, A.K. et al. Fine mapping of the EDA gene: a translocation breakpoint is associated with a CpG island that is transcribed. Am. J. Hum. Genet. 58, 126–132 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zonana, J. et al. Detection of a molecular deletion at the DXS732 locus in a patient with X-linked hypohidrotic ectodermal dysplasia (EDA), with identification of a unique junctional fragment. Am. J. Hum. Genet. 52, 78–84 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kozak, M. An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucl. Acids Res. 15, 8125–8148 (1987).

    Article  CAS  Google Scholar 

  21. Singer, S.J. The structure and insertion of integral proteins in membranes. Annu. Rev. Cell. Biol. 6, 247–296 (1990).

    Article  CAS  Google Scholar 

  22. Orita, M., Suzuki, Y., Sekiya, T. & Hayashi, K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5, 874–879 (1989).

    Article  CAS  Google Scholar 

  23. Pihlajaniemi, T. & Rehn, M. Two new collagen subgroups: membrane-associated collagens and types XV and XVII. Progr. Nucl. Acid Res. Mol. Biol. 50, 225–262 (1995).

    Article  CAS  Google Scholar 

  24. Elomaa, O. et al. Cloning of a novel bacteria-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. Cell 80, 603–609 (1995).

    Article  CAS  Google Scholar 

  25. Padgett, R.A., Grabowski, P.J., Konarska, M.M., Seller, S. & PA Splicing of messenger RNA pecursors. Annu. Rev. Biochem. 55, 1119–1150 (1986).

    Article  CAS  Google Scholar 

  26. Kinniburgh, A.J., Maquat, L.E., Shedl,T., Rachmilewitz, E. & Ross, J. mRNA-deficient beta-thalassemia results from a single nucleotide deletion. Nucl. Acids Res. 10, 5421–5427 (1982).

    Article  CAS  Google Scholar 

  27. Baserga, J.J. & Benz, E.J. Nonsense mutation in the human beta-globin gene affect mRNA metabolism. Proc. Natl. Acad. Sci. USA 85, 2056–2060 (1988).

    Article  CAS  Google Scholar 

  28. Rogers, G.E. & Powell, B.C. Organization and expression of hair follicle genes. J. Invest. Dermatol. 101, 50S–55S (1993).

    Article  CAS  Google Scholar 

  29. Travis, A., Amsterdam, A., Belanger, C. & Grosschedl, R. LEF-1.A gene encoding a lymphoid-specific protein with an HMG domain, regulates T-cell receptor alpha enhancer function. Genes Dev. 5, 880–694 (1991).

    Article  CAS  Google Scholar 

  30. Giese, K., Cox, J. & Grosschedl, R. The HMG domain of lymphoid enhancer factor 1 bends DNA and facilitates assembly of functional nucleoprotein structures. Cell 69, 185–195 (1992).

    Article  CAS  Google Scholar 

  31. Zhou, P., Byrne, C., Jacobs, J. & Fuchs, E. Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate. Genes Dev. 9, 570–583 (1995).

    CAS  Google Scholar 

  32. van Genderen, C. et al. Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1 deficient mice. Genes Dev. 8, 2691–2703 (1994).

    Article  CAS  Google Scholar 

  33. Falconer, D.S. A totally sex-linked gene in the house mouse. Nature 169, 664–665 (1952).

    Article  CAS  Google Scholar 

  34. Blecher, S.R. Anhidrosis and absence of sweat glands in mice hemizygous for the Tabby gene: supportive evidence for the hypothesis of homology between Tabby and human anhidrotic (hypohidrotic) ectodermal dysplasia (Christ-Siemens-Touraine syndrome). J. Invest Dermatol. 87, 720–722 (1986).

    Article  CAS  Google Scholar 

  35. Brockdorff, N., Kay, G., Cattanach, B.M. & Rastan, S. Molecular genetic analysis of the Ta25H deletion: evidence for additional deleted loci. Mammal. Genome 1, 152–157 (1991).

    Article  CAS  Google Scholar 

  36. Blecher, S.R., Kapalanga, J. & Lalonde, D. Induction of sweat glands by epidermal growth factor in murine X-linked anhidrotic ectodermal dysplasia. Nature 345, 542–544 (1990).

    Article  CAS  Google Scholar 

  37. Miettinen,R.J. et al. Epithelial immaturity and multiorgan failure in mice lacking epidermal growth factor receptor. Nature 376, 337–341 (1995).

    Article  CAS  Google Scholar 

  38. Hardy, M.H. The secret life of the hair follicle. Trends Genet. 8, 55–61 (1992).

    Article  CAS  Google Scholar 

  39. Uberbacher, E.C. & Mural, R.J. Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach. Proc. Natl. Acad. Sci. USA 88, 11261–11265 (1991).

    Article  CAS  Google Scholar 

  40. Genetics computer Group. Program Manual for the Wisconsin Package, Version 8. (Madison, Wisconsin, 1994).

  41. Zonana, J. et al. Detection of de novo mutations and analysis of their origin in families with X-linked hypohidrotic ectodermal dysplasia. J. Med. Genet. 31, 287–292 (1994).

    Article  CAS  Google Scholar 

  42. Peissel, B. et al. Small frame shift deletions within the COL4A5 gene in juvenile-onset Alport syndrome. Hum. Genet. 92, 417–420 (1993).

    Article  Google Scholar 

  43. Chromczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 163, 156–159 (1987).

    Google Scholar 

  44. Sambrook, J., Fritch, E.F. & Maniatis, T. Molecular cloning: a laboratory manual. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989).

    Google Scholar 

  45. Prosser, I.W. et al. Regional heterogeneity of elastin and collagen gene expression in intralobar arteries in response to hypoxic pulmonary hypertension as demonstrated by in situ hybridization. Am. J. Pathol. 135, 1073–1088 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Saarialho-Kere, U.K. et al. Cell-matrix interactions modulate interstitial collagenase expression by human keratinocytes actively involved in wound healing. J. Clin. Invest. 92, 2858–2866 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kere, J., Srivastava, A., Montonen, O. et al. X–linked anhidrotic (hypohidrotic) ectodermal dysplasia is caused by mutation in a novel transmembrane protein. Nat Genet 13, 409–416 (1996). https://doi.org/10.1038/ng0895-409

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0895-409

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing