Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification and characterization of the gene causing type 1 spinocerebellar ataxia

Abstract

Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disorder caused by expansion of a CAG trinucleotide repeat. In this study, we describe the identification and characterization of the gene harbouring this repeat. The SCA1 transcript is 10,660 bases and is transcribed from both the wild type and SCA1 alleles. The CAG repeat, coding for a polyglutamine tract, lies within the coding region. The gene spans 450 kb of genomic DNA and is organized in nine exons. The first seven fall in the 5′ untranslated region and the last two contain the coding region, and a 7,277 basepairs 3′ untranslated region. The first four non–coding exons undergo alternative splicing in several tissues. These features suggest that the transcriptional and translational regulation of ataxin–1, the SCA1 encoded protein, may be complex.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Greenfield, J.G. The spino-cerebellar degenerations (Charles C. Thomas, Springfield, Illinois, 1954).

    Google Scholar 

  2. Zoghbi, H.Y. The spinocerebellar degenerations in Current Neurology (ed. Appel, S.H.)121–144 (Mosby-Year Book, St-Louis, 1991).

    Google Scholar 

  3. Schut, J.W. Hereditary ataxia: clinical study through six generations. Arch. Neurol. Psychiat. 63, 535–567 (1954).

    Article  Google Scholar 

  4. Currier, R.D., Glover, G., Jackson, J.F. & Tipton, A.C. Spinocerebellar ataxia: study of a large kindred. Neurology 22, 1040–1043 (1972).

    Article  CAS  PubMed  Google Scholar 

  5. Haines, J.L., Schut, L.J. & Weitkamp, L.R. Spinocerebellar ataxia in large kindred: age at onset, reproduction, and genetic linkage studies. Neurology 34, 1542–1548 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. Zoghbi, H.Y. et al. Spinocerebellar ataxia: variable age of onset and linkage to human leukocyte antigen in a large kindred. Ann. Neurol. 23, 580–584 (1988).

    Article  CAS  PubMed  Google Scholar 

  7. Jackson, J.F., Currier, R.D., Terasaki, P.I. & Morton, N.E. Spinocerebellar ataxia and HLA linkage: risk prediction by HLA typing. New Engl. J. Med. 296, 1138–1141 (1977).

    Article  CAS  PubMed  Google Scholar 

  8. Zoghbi, H.Y. et al. The gene for autosomal dominant spinocerebellar ataxia (SCA1) maps telomeric to HLA complex and is closely linked to the D6S89 locus in three large kindreds. Am. J. hum. Genet. 49, 23–30 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ranum, L.P.W. et al. Localization of the autosomal dominant, HLA-linked spinocerebellar ataxia (SCA1) locus in two kindreds within an 8cM subregion of chromosome 6p. Am. J. hum. Genet. 48, 31–41 (1991).

    Google Scholar 

  10. Kwiatkowski Jr, T.J. et al. The gene for autosomal dominant spinocerebellar ataxia (SCA1) maps centromeric to D6S89 and shows no recombination, in nine large kindreds, with a dinucleotide repeat at the AM10 locus. Am. J. hum. Genet. 53, 391–400 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Banfi, S. et al. Mapping and cloning of the critical region for the spinocerebellar ataxia type 1 gene in a yeast artificial chromosome contig spanning 1.2Mb. Genomics 18, 627–635 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Orr, H. et al. Expansion of an unstable trinucleotide (CAG) repeat in spinocerebellar ataxia type 1. Nature Genet. 4, 221–226 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Matilla, T. et al. Presymptomatic analysis of spinocerebellar ataxia type 1 (SCA1) via the expansion of the SCA1 CAG-repeat in a large pedigree displaying anticipation and parental male bias. Hum. molec. Genet. 2, 2123–2128 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Jodice, C. et al. Effect of trinucleotide repeat length and parental sex on phenotyplc variation in spinocerebellar ataxia 1. Am. J. hum. Genet. 54, 959–965 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ranum, L.P.W. et al. Molecular and clinical correlations in spinocerebellar ataxia type 1 (SCA1): evidence for familial effects on the age of onset. Am. J. hum. Genet. 55, 244–252 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kozak, M. The scanning model for translation: an update. J. cell. Biol 108, 229–241 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Adams, M.D., Kerlavage, A.R., Fields, C. & Venter, J.C. 3400 Expressed sequence tags identity diversity of transcripts from human brain. Nature Genet. 4, 256–267 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Frohman, M.A. Race: rapid amplification of cDNA ends in PCR protocols . A guide to methods and applications (eds Innis, M.A., Gelfand, D.H., Sninsky, J.J.& Whit, T.J.) (Academic Press, San Diego, 1990).

    Google Scholar 

  19. Cripe, L.D., Moore, K.D. & Kane, W.H. Structure of the gene for human coagulation factor V. Biochem. 31, 3777–3785 (1992).

    Article  CAS  Google Scholar 

  20. Ludwig, E.H. et al. DNA sequence of the human apolipoprotein B gene. DNA 6, 363–372 (1987).

    Article  CAS  PubMed  Google Scholar 

  21. Myers, R.L., Payson, R.A., Chotani, M.A., Deaven, L.L. & Chiu, I.M. Gene structure and differential expression of acidic fibroblast growth factor mRNA: identification and distribution of four different transcripts. Oncogene 8, 341–349 (1993).

    CAS  PubMed  Google Scholar 

  22. Link, D.C., Gutkind, S.J., Robbins, K.C. & Ley, T.J. Characterization of the 5′ region of the human c-fgr and identification of the major myelomonocytic c-fgr promoter. Oncogene 7, 877–884 (1992).

    CAS  PubMed  Google Scholar 

  23. Rastinejad, F., Conboy, M.J., Rando, T.A. & Blau, H.M. Suppression by RNA from the 3′ untranslated region of α-tropomyosin. Cell 75, 1107–1117 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. La Spada, A.R., Wilson, E.M., Lubahn, D.B., Harding, A.E. & Fischbeck, H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. The Huntingdon's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72, 971–983 (1993).

    Article  Google Scholar 

  26. Koide, R. et al. Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nature Genet. 6, 9–13 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Nagafuchi, S. et al. Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nature Genet. 6, 14–18 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Tilley, W.D., Marcelli, M. & McPhaul, M.J. Expression of the human androgen receptor gene utilizes a common promoter In diverse human tissues and cell lines. J. biol. Chem. 265, 13776–13781 (1990).

    CAS  PubMed  Google Scholar 

  29. Lin, B. et al. Differential 3′ polyadenylation of the Huntington disease gene results In two mRNA species with variable tissue expression. Hum. molec. Genet. 2, 1541–1545 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Pieretti, M. et al. Absence of expression of the FMR-1 gene in fragile X syndrome. Cell 66, 817–822 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. Fu, Y.-H. et al. Decreased expression of myotonin-protein kinase messenger RNA and protein in adult form of myotonic dystrophy. Science 260, 235–238 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Sabouri, L.A. et al. Effect of the myotonic dystrophy (DM) mutation on mRNA levels of the DM gene. Nature Genet. 4, 233–238 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Trifiro, M. et al. The 56/58 kDa androgen-bindlng protein in male genital skin fibroblasts with a deleted androgen receptor gene. Molec. cell. Endocrinol. 75, 37–47 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. Quigley, C.A. et al. Complete deletion of the androgen receptor gene: definition of the null phenotype of the androgen insensitivity syndrome and determination of carrier status. J. clin. Endocrinol. Metab. 74, 927–933 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Feinberg, A.P. & Vogelstein, B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Analytical Biochem. 137, 266–267 (1984).

    Article  CAS  Google Scholar 

  36. Sealy, P.G., Whittaker, P.A. & Southern, E.M. Removal of repeated sequences from hybridization probes. Nucl. Acids Res. 13, 1905–1922 (1985).

    Article  Google Scholar 

  37. Zoghbi, H.Y., Daiger, S.P., McCall, A., O'Brien, W.E. & Beaudet, A.L. Extensive DNA polymorphism at the factor Xllla (F13a) locus and linkage to HLA. Am. J. hum. Genet. 42, 877–883 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bankier, A.T., Weston, K.M. & Barrel, B.G. Random cloning and sequencing by the M13 dideoxynucleotide termination method. Meth. Enzymol. 155, 55–93 (1987).

    Google Scholar 

  39. Gibbs, R., Nguyen, P.N., Mc Bride, L.J., Koepf, S.M. & Caskey, C.T. Identification of mutations leading to the Lesch-Nyhan syndrome by automated direct DNA sequencing of in vitro amplified cDNA. Proc. natn. Acad. Sci. U.S.A 86, 1919–1923 (1989).

    Article  CAS  Google Scholar 

  40. Marchuk, D., Drumm, M., Saulino, A. & Collins, F.S. Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucl. Acids Res. 19, 1154 (1990).

    Article  Google Scholar 

  41. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. A basic local alignment search tool. J. molec. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  42. Wapenaar, M.C. et al. The genes for X-linked ocular albinism (OA1) and microphthalmia with linear skin defects (MLS): cloning and characterization of the critical regions. Hum. molec. Genet. 2, 947–952 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Groden, J. et al. Identification and characterization of the familial adenomatous polyposis Coli gene. Cell 66, 589–600 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banfi, S., Servadio, A., Chung, My. et al. Identification and characterization of the gene causing type 1 spinocerebellar ataxia. Nat Genet 7, 513–520 (1994). https://doi.org/10.1038/ng0894-513

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0894-513

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing