Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genomic scanning for expressed sequences in Xp21 identifies the glycerol kinase gene

Abstract

Rapid genomic scanning methods are required to identify expressed sequences and we report an efficient, sensitive and specific approach which relies upon hybridization of an amplified, labeled cDNA library to digested cosmid DNA. We identified expressed sequences within a cosmid in the glycerol kinase (GK) “critical region” of Xp21 that had impressive similarity to prokaryotic GKs. We used this genomic sequence information to clone the human hepatic GK cDNA. Independent confirmation of the identity of this gene was obtained by functional complementation of GK deficient E. coli mutants with a construct containing the complete human X–linked GK coding sequence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Monaco, A.P. et al. Isolation of candidate cDNAs for portions of the Duchenne muscular dystrophy gene. Nature 323, 646–650 (1986).

    Article  CAS  Google Scholar 

  2. Bird, A.P. CpG-rich islands and the function of DNA methylation. Nature 321, 209–213 (1986).

    Article  CAS  Google Scholar 

  3. Bird, A.P. CpG islands as gene markers in the vertebrate nucleus. Trends Genet. 3, 342–347 (1987).

    Article  CAS  Google Scholar 

  4. Vollrath, D., Davis, R.W., Connelly, C. & Hieter, P. Physical mapping of large DNA by chromosome fragmentation. Proc. natn. Acad. Sci. U.S.A. 85, 6027–6031 (1988).

    Article  CAS  Google Scholar 

  5. Kurnit, D.M. & Seed, B. Improved genetic selection for screening bacteriophage libraries by homologous recombination in vivo. Proc. natn. Acad. Sci. U.S.A. 87, 3166–3169 (1990).

    Article  CAS  Google Scholar 

  6. Hochgeschwender, U., Sutcliffe, J.G. & Brennan, M.B. Construction and screening of a genomic library specific for mouse chromosome 16. Proc. natn. Acad. Sci. U.S.A. 86, 8482–8486 (1989).

    Article  CAS  Google Scholar 

  7. Liu, P., Legerski, R. & Siciliano, M.J. Isolation of human transcribed sequences from human-rodent somatic cell hybrids. Science 246, 813–815 (1989).

    Article  CAS  Google Scholar 

  8. Corbo, L., Maley, J.A., Nelson, D.L. & Caskey, C.T. Direct cloning of human transcripts with HnRNA from hybrid cell lines. Science 249, 652–655 (1990).

    Article  CAS  Google Scholar 

  9. Duyk, J.M., Kim, S., Myers, R.M. & Cox, D.R. Exon trapping: A genetic screen to identify candidate transcribed sequences in cloned mammalian genomic DNA. Proc. natn. Acad. Sci. U.S.A. 87, 8995–8999 (1990).

    Article  CAS  Google Scholar 

  10. Buckler, A.J. et al. Exon amplification: A strategy to isolate mammalian genes based on RNA splicing. Proc. natn. Acad. Sci. U.S.A. 88, 4005–4009 (1991).

    Article  CAS  Google Scholar 

  11. Elvin, P. et al. Isolation of cDNA clones using yeast artificial chromosome probes. Nucl. Acids Res. 18, 3913–3917 (1990).

    Article  CAS  Google Scholar 

  12. Adams, M. et al. Sequence identification of 2,375 human brain genes. Nature 355, 632–634 (1992).

    Article  CAS  Google Scholar 

  13. Saiki, R.K. et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354 (1985).

    Article  CAS  Google Scholar 

  14. Southern, E.M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  15. McCabe, E.R.B. Disorders of glycerol metabolism. in The Metabolic Basis of Inherited Disease, (eds Scriver, C.R., Beaudet, A.L, Sly, W.S. & Valle, D.) 945–965 (McGraw-Hill, New York, 1989).

    Google Scholar 

  16. Walker, A.P. et al. A YAC contig in Xp21 containing the adrenal hypoplasia congenita and glycerol kinase deficiency genes. Hum. molec. Genet. 1, 579–585 (1992).

    Article  CAS  Google Scholar 

  17. Worley, K.C. et al. Yeast artificial chromosome cloning in the glycerol kinase and adrenal hypoplasia congenita region of Xp21. Genomics 16, 407–416 (1993).

    Article  CAS  Google Scholar 

  18. Davies, K.E. et al. Fine mapping of glycerol kinase deficiency and adrenal hypoplasia within Xp21 on the short arm of the human X chromosome. Am. J. med. Genet 29, 557–564 (1988).

    Article  CAS  Google Scholar 

  19. Love, D.R., Bloomfield, J.F., Kenwrick, S.J., Yates, J.R.W. & Davies, K.E. Physical mapping distal to the DMD locus. Genomics 8, 106–112 (1990).

    Article  CAS  Google Scholar 

  20. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. molec. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  21. Pettigrew, D.W., Ma, D.-P., Conrad, C.A. & Johnson, J.R. Escherichia coli glycerol kinase: Cloning and sequencing of the glpK gene and the primary structure of the enzyme. J. Biol. Chem. 263, 135–139 (1988).

    CAS  PubMed  Google Scholar 

  22. Holmberg, C., Beijer, L., Rutberg, B. & Rutberg, L. Glycerol catabolism in Bacillus subtilis: Nucleotide sequence of the genes encoding glycerol kinase (glpK) and glycerol-3-phosphate dehydrogenase (iglpD). J. gen. Microbiol. 136, 2367–2375 (1990).

    Article  CAS  Google Scholar 

  23. Guigo, R., Knudsen, S., Drake, N. & Smith, T. Prediction of gene structure. J. molec. Biol. 226, 141–157 (1992).

    Article  CAS  Google Scholar 

  24. Genetics Computer Group (GCG), Sequence Analysis Software Package, Version 7.0 (University Research Park, Madison, Wisconsin, 1991).

  25. Lupski, J.R. et al. Mutational analysis of the Escherichia coli glpFK region with Tn5 mutagenesis and the polymerase chain reaction. J. Bacteriol. 172, 6129–6134 (1990).

    Article  CAS  Google Scholar 

  26. Sargent, C.A. et al. Cloning of the X-linked glycerol kinase deficiency gene and its identification by sequence comparison to the Bacillus subtilis homologue. Hum. molec. Genet. 2, 97–106 (1993).

    Article  CAS  Google Scholar 

  27. Walker, A.P., Muscatelli, F. & Monaco, A.P. Isolation of the human Xp21 glycerol kinase gene by positional cloning. Hum. molec. Genet. 2, 107–114 (1993).

    Article  CAS  Google Scholar 

  28. Mohri, H. & Masaki, J. Glycerokinase and its possible role in glycerol metabolism of bull spermatozoa. J. Reprod. Fertil. 14, 179–194 (1967).

    Article  CAS  Google Scholar 

  29. Brooks, D.E. The interaction of α-chlorohydrin with glycerol kinase. J. Reprod. Fertil. 56, 593–599 (1979).

    Article  CAS  Google Scholar 

  30. McCarrey, J.R. & Thomas, K. Human testis-specific PGK gene lacks introns and possesses characteristics of a processed gene. Nature 326, 501–505 (1987).

    Article  CAS  Google Scholar 

  31. Dahl, H-H.M., Brown, R.M., Hutchison, W.M., Maragos, C. & Brown, G.K. A testis specific form of the human pyruvate dehydrogenase E1 α subunit is coded for by an intronless gene on chromosome 4. Genomics 8, 225–232 (1990).

    Article  CAS  Google Scholar 

  32. Hurley, J.H. et al. Structure of the regulatory complex of Escherichia coli IIIGlc with glycerol kinase. Science 259, 673–677 (1993).

    Article  CAS  Google Scholar 

  33. Seltzer, W.K. et al. Adrenal dysfunction in glycerol kinase deficiency. Biochem. Med. 33, 189–199 (1985).

    Article  CAS  Google Scholar 

  34. Hensleigh, P.A., Moore, W.V., Wilson, K. & Tulchinsky, D., X-linked adrenal hypoplasia. Obstet. Gynecol. 52, 228–232 (1978).

    CAS  PubMed  Google Scholar 

  35. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning—A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1989).

    Google Scholar 

  36. Feinberg, A.P. & Vogelstein, B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132, 6–13 (1983).

    Article  CAS  Google Scholar 

  37. Church, G.M. & Gilbert, W. Genomic sequencing. Proc. natn. Acad. Sci. U.S.A. 81, 1991–1995 (1984).

    Article  CAS  Google Scholar 

  38. Gribskov, M. & Burgess, R.R. Sigma factors from E. coli, B. subtilis, phage SP01 and phage T4 are homologous proteins. Nucl. Acids Res. 14, 6745–6763 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, W., Worley, K., Adams, V. et al. Genomic scanning for expressed sequences in Xp21 identifies the glycerol kinase gene. Nat Genet 4, 367–372 (1993). https://doi.org/10.1038/ng0893-367

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0893-367

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing