Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1

Abstract

Alagille syndrome is an autosomal dominant disorder characterized by abnormal development of liver, heart, skeleton, eye, face and, less frequently, kidney. Analyses of many patients with cytogenetic deletions or rearrangements have mapped the gene to chromosome 20p12, although deletions are found in a relatively small proportion of patients (< 7%). We have mapped the human Jagged1 gene (JAG1), encoding a ligand for the developmentally important Notch transmembrane receptor, to the Alagille syndrome critical region within 20p12. The Notch intercellular signalling pathway has been shown to mediate cell fate decisions during development in invertebrates and vertebrates. We demonstrate four distinct coding mutations in JAG1 from four Alagille syndrome families, providing evidence that it is the causal gene for Alagille syndrome. All four mutations lie within conserved regions of the gene and cause translational f rameshifts, resulting in gross alterations of the protein product. Patients with cytogenetically detectable deletions including JAG1 have Alagille syndrome, supporting the hypothesis that haploinsufficiency for this gene is one of the mechanisms causing the Alagille syndrome phenotype.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Alagille, D. et al. Syndromic paucity of interlobular bile ducts. J. Pediatr. 110, 195–200 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Krantz, I.D., Piccoli, D.A. & Spinner, N.B. Alagille syndrome. J. Med. Genet. 34, 152–157(1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Danks, D.M., Campbell, P.E., Jack, I., Rogers, J. & Smith, A.L. Studies of the aetiology of neonatal hepatitis and biliary atresia. Arch. Dis. Child. 52, 360–367 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Krantz, I.D. et al. Deletions of 20p12 in Alagille syndrome: frequency and molecular characterization. Am. J. Med. Genet. 70, 80–86 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Piccoli, D.A. & Witzleben, C.L. Disorders of the intrahepatic bile ducts.. in Gastrointestinal disease: pathophysiology, Diagnosis, Management, 3rd ed (eds Walker, D . A. et al.) 1124–1140 (B.C. Decker, Philadelphia, 1991).

    Google Scholar 

  6. Watson, G.H. & Miller, V. Arteriohepatic dysplasia: familial pulmonary arterial stenosis with neonatal liver disease. Arch. Dis. Child. 48, 459–466 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dhorne-Pollet, S., Deleuze, J.-F., Hadchouel, M. & Bonaiti-Pellie, C. Segregation analysis of Alagille syndrome. J. Med. Genet. 31, 453–457 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schnittger, S., Hofers, C., Heidemann, P., Beermann, F. & Hansmann, I. Molecular and cytogenetic analysis of an interstitial 20p deletion associated with syndromic intrahepatic ductular hypoplasia (Alagille syndrome). Hum. Genet. 83, 239–244 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Spinner, N.B. et al. Cologically balanced t(2;20) in a two generation family with Alagille syndrome: cytogenetic and molecular studies. Am. J. Hum. Genet. 55, 238–243 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Rand, E.B., Spinner, N.B., Piccoli, D.A., Whitington, P.F. & Taub, R. Molecular analysis of 24 Alagille syndrome families identifies a single submicroscopic deletion and further localizes the Alagille region within 20p12. Am. J. Hum. Genet. 57, 1068–1073 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Deleuze, J.-F., Hazan, J., Dhorne, S., Weissenbach, J. & Hadchouel, M. Mapping of microsatellite markers in the Alagille region and screening of microdeletions by genotyping 23 patients. Eur. J. Hum. Genet. 2, 185–190 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Li, L. et al. Human homolog of rat Jagged, JAG 1, inhibits granulocytic differentiation of 32D myeloid progenitors through interaction with Notch 1. Immunity (in press).

  13. Greenwald, I. & Rubin, G.M. Making a difference: the role of cell-cell interactions in establishing separate identities for equivalent cells. Cell. 68, 271–281 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Fortini, M.E., Rebay, I., Caron, L.A. & Artavan-Tsakonas, S An activated Notch receptor blocks cell-fate commitment in the developing Drosophila eye . Nature 365, 555–557 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Artavanis-Tsakonas, S., Matsuno, K. & Fortini, M.E. Notch signaling. Science 268, 225–232 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Franco del Amo, F. et al. Expression pattern of Motch, a mouse homolog of Drosophila Notch, suggests an important role in early postimplantation mouse development. Development 115, 737–744 (1992).

    CAS  Google Scholar 

  17. Reaume, A.G., Conlon, R.A., Zirngibl, R., Yamaguchi, T. & Rossant, J. Expression analysis of a Notch homologue in the mouse embryo. Dev. Biol. 154, 377–387 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Kopan, R. & Weintraub, H., Notch: expression in hair follicles correlates with cell fate determination. Cell Biol. 121, 631–641 (1993).

    Article  CAS  Google Scholar 

  19. Lardeli, M., Dahlstrand, J. & Lendahl, U. The novel Notch homolog mouse Notch3 lacks specific epidermal growth factor-repeats and is expressed in proliferating neuroepithelium. Mech. Dev. 46, 123–136 (1994).

    Article  Google Scholar 

  20. Weinmaster, G., Roberts, V.J. & Lemke, G. A homolog of Drosophila Notch expressed during mammalian development. Development 113, 199–205 (1991).

    CAS  PubMed  Google Scholar 

  21. Weinmaster, G., Roberts, V.J. & Lemke, G. Notch2: a second mammalian Notch gene. Development 116, 931–941 (1992).

    CAS  PubMed  Google Scholar 

  22. Uyttendaele, H. et al. Notch4/int-3, a mammary proto-oncogene, is an endothelial cell-specific mammalian Notch gene. Deve/opment 122, 2251–2259 (1996).

    CAS  Google Scholar 

  23. Robey, E. et al. An activated form of Notch influences the choice between CD4 and CDS T cell lineages. Cell 87, 483–492 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Washburn, T. et al. Notch activity influences the αβ versus γδ T cell lineage decision. Cell 88, 833–643 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Swiatek, P.J., Lindsell, C.E., del Amo, F., Weinmaster, G. amp; Gridley, T. Notch1 is essential for postimplantation development in mice. Genes Dev. 8, 707–719 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Bao, Z.Z., Cepko, C.L. The expression and function of Notch pathway genes in the developing rat eye. J. Neurosci. 17, 1425–1434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ellisen, L.W. et al. TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell. 66, 649–661 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Sugaya, K. et al. Three genes in the human MHC class III region near the junction with the class II: gene for receptor of advanced glycosylation end products, PBX2 homeobox gene and a Notch homolog, human counterpart of mouse mammary tumor gene int-3 . Genomics. 23, 408–119 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Muskavitch, M.A. & Hoffman, P.M. Homologs of vertebrate growth factors in Drosophila melanogaster and other vertebrates. Curr. Topics Dev. Biol. 24, 289–328 (1990).

    Article  CAS  Google Scholar 

  30. Lindsell, C.E., Shawber, C.J., Boulter, J. & Weinmaster, G. Jagged: a mammalian ligand that activates Notch 1. cell 80, 909–917 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Henderson, S.T., Gao, D., Lambie, E.J. & Kimble, J. Lag-2 may encode a signaling ligand for the GLP-1 and LIN-12 receptors of C elegans. Development 120, 2913–2924 (1994).

    CAS  PubMed  Google Scholar 

  32. Lieber, T. et al. Single amino acid substitutions in EGF-like elements of Notch and Delta modify Drosophila development and affect cell adhesion in vitro . Neuron. 9, 847–859 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Shawber, C.J., Boulter, J., Lindsell, C.E. & Weinmaster, G. Jagged2: A Serrate-like gene expressed during rat embryogenesis. Dev. Biol. 180, 370–376 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Zimrin, A.B. et al. An antisense oligonucleotide to the Notch ligand Jagged enhances fibroblast growth factor-induced angiogenesis in vitro. J. Biol. Chem. 51, 32499–32502(1996).

    Article  Google Scholar 

  35. Spinner, N.B. et al. Mapping the Alagille syndrome critical region within 20p12. Proc. Single Chromosome 20 Workshop, February 1997, Hinxton, Cambridgeshire, UK Cytogenetic. Cell Genet. (in press).

  36. Oda, T. et al. Mutations in the human Jagged! Gene (JAGL1) are responsible for the Alagille syndrome. Nat. Genet. 16, 235–242 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Delwart, E.L. et al. Genetic relationships determined by a DNA heteroduplex mobility assay: analysis of HIV-1 env genes. Science 262, 1257–1261 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Kahn, E. et al. Nonsyndromic paucity of interlobular bile ducts: light and electron microscopic evaluation of sequential liver biopsies in early childhood. Hepatology 6, 890–901 (1986).

    Article  CAS  PubMed  Google Scholar 

  39. Novotny, N.M., Zetterman, R.K., Antonson, D.L. & Vanderhoof, J.A. Variation in liver histology in Alagille's syndrome. Am. J. Gastroenterol. 75, 449–506 (1981).

    CAS  PubMed  Google Scholar 

  40. Lindsell, C.E., Boulter, J. diSibio, G., Gossler, A. & Weinmaster, G. Expression patterns of Jagged, Deltal, NotcM, Notch2, and NotchS genes identify ligand-receptor pairs that may function in neural development. Mol. Cell. Neurosd. 8, 14–27 (1996).

    Article  CAS  Google Scholar 

  41. Conlon, R.A., Reaume, A.G. & Rossant, J. Notch1 is required for the coordinate segmentation of somites. Development 121, 1533–1545 (1995).

    CAS  PubMed  Google Scholar 

  42. de Angeles, M.H., Mclntyre, J., Gossler, A. Maintenance of somite borders in mice requires the Delta homologue DII1. Nature. 386, 717–721 (1997).

    Article  Google Scholar 

  43. Joutel, A. et al.Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 383, 707–710 (1996).

    Google Scholar 

  44. Wilkie, A.O.M. The molecular basis of genetic dominance. Med. Genet. 31, 89–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nickerson, E., Greenberg, F., Keating, M.T., McCaskill, C. & Shaffer, L.G. Deletions of the elastin gene at 7q11.23 occur in 90% of patients with Williams syndrome. Am. J. Hum. Genet. 56, 1156–1161 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Petrij, F. et al. Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 376, 348–351 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Lindsley, D.L. & Zimm, G.G. The genome of Drosophila melanogaster (Academic Press, New York, 1992).

    Google Scholar 

  48. Heitzler, P. & Simpson, P. The choice of cell fate in the epidermis of Drosophila . Cell 64, 1083–1092(1991).

    Article  CAS  PubMed  Google Scholar 

  49. Pollet, N et al .Construction of a 3.7 Mb physical map within human chromosome 20p12 ordering 18 markers in the Alagille syndrome locus. Genomics 27, 467–474 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Shepherd, N.S. et al. Preparation and screening of an arrayed human genomic library generated with the P1 cloning system. Proc. Natl. Acad. Sci USA 91, 2629–2633 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stokke, T. et al. A physical map of chromosome 20 established using fluorescence in situ hybridization and digital image analysis. Genomics 26, 134–137 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Shizuya, H. et al. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor based vector. Proc Natl. Acad. Sci USA. 89, 8794–8797 (1992).

    Google Scholar 

  53. Kim, U.-J. et al. Construction and characterization of a human bacterial artificial chromosome library. Genomics 34, 213–218 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Smith, T.M. et al. complete genomic sequence and analysis of 117 kb of human DNA containing the gene BRCA1. Genome Res. 6, 1029–1049(1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Krantz, I., Deng, Y. et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat Genet 16, 243–251 (1997). https://doi.org/10.1038/ng0797-243

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0797-243

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing