Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Highly homologous loci on the X and Y chromosomes are hot–spots for ectopic recombinations leading to XX maleness

Abstract

In 80% of XX males, maleness is due to the presence of Y–specific DNA including the SRY gene and results from an abnormal terminal X–Y interchange during paternal meiosis. Here we address the molecular basis of this ectopic recombination through the analysis of the X–Y junction in two class 3 XX males. We show that each of the rearrangements has involved X–Y highly homologous loci on the sex–specific part of these chromosomes (98.7% and 96% sequence identity over 1.2 and 1.1 kb respectively). Moreover in five out of six other XX males, the X–Y junctions are located in the same rearranged restriction fragment as in either of these patients. These fragments thus define two hot–spots of ectopic recombination which together could account for about one third of XX males. Evolution of these loci in primates is discussed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. de la Chapelle, A. Etiology of maleness in XX men. Hum. Genet. 58, 105–116 (1981).

    Article  CAS  PubMed  Google Scholar 

  2. Sinclair, A.H. et al. A gene from the human sex–determining region encodes a protein with homology to a conserved DMA–binding motif. Nature 346, 240–244 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Ferguson–Smith, M.A. X–Y chromosomal interchange in the etiology of true hermaphroditism and of XX Klinefelter's syndrome. Lancet ii, 475–476 (1966).

    Article  Google Scholar 

  4. Affara, N.A. et al. Variable transfer of Y–specific sequences in XX males. Nucl. Acids Res. 14, 5375–5387 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Page, D.C., Brown, L.G. & de la Chapelle, A. Exchange of terminal portions of X– and Y– chromosomal short arms in human XX males. Nature 328, 437–440 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. Petit, C. et al. An abnormal terminal X–Y interchange accounts for most but not all cases of human XX maleness. Cell 49, 595–602 (1987).

    Article  CAS  PubMed  Google Scholar 

  7. Rouyer, F. et al. The pseudoautosomal region of the human sex chromosomes. Cold Spring Harbor Symp. Quant. Biol. 51, 221–228 (1986).

    Article  CAS  PubMed  Google Scholar 

  8. Cooke, H.J., Brown, W.R.A. & Rappold, G.A. Hypervariable telomeric sequences from the human sex chromosomes are pseudoautosomal. Nature 317, 687–692 (1985).

    Article  CAS  PubMed  Google Scholar 

  9. Simmler, M.C. et al. Pseudoautosomal DNA sequences In the pairing region of the human sex chromosomes. Nature 317, 692–697 (1985).

    Article  CAS  PubMed  Google Scholar 

  10. Chandley, A.C., Goetz, P., Hargreave, T.B., Joseph, A.M. & Speed, R.M. On the nature and extent of XY pairing at meiotic prophase in man. Cytogenet. cell Genet. 38, 241–247 (1984).

    Article  CAS  PubMed  Google Scholar 

  11. Vergnaud, G. et al. A deletion map of the human Y chromosome based on DNA hybridization. Am. J. hum. Genet. 38, 109–124 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Müller, U. et al. Deletion mapping of the testis determining locus with DNA probes in 46, XX males and in 46,XY and 46,X,dic(Y) females. Nucl. Acids Res. 14, 6489–6505 (1986).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Vollrath, D. et al. The human Y chromosome: 43–interval map based on naturally occurring deletions. Science 258, 52–59 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Rouyer, F., Simmler, M.C., Page, D.C. & Weissenbach, J. A sex chromosome rearrangement in a human XX male caused by Alu–Alu recombination. Cell 51, 417–425 (1987).

    Article  CAS  PubMed  Google Scholar 

  15. Petit, C. et al. Isolation of sequences from Xp22.3 and deletion mapping using sex chromosomes rearrangements from human X–Y interchange sex reversals. Genomics 6, 651–658 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Page, D.C., Harper, M.E., Love, J. & Botstein, D. Occurrence of atransposrtion from the X chromosome long arm to the Y chromosome short arm during human evolution. Nature 311, 119–123 (1984).

    Article  CAS  PubMed  Google Scholar 

  17. Koenig, M., Moisan, J.P., Heilig, R. & Mandel, J.L. Homologies between X and Y chromosomes detected by DNA probes: localisation and evolution. Nucl. Acids Res. 13, 5485–5501 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Weil, D. et al. A 45, X male with an X;Y translocation: implications for the mapping of the genes responsible for Turner syndrome and X–linked Chondrodysplasla Punctata. Hum. molec. Genet. 2, 1853–1856 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Albertsen, H.M. et al. Construction and characterization of a yeast artificial chromosome library containing seven haploid human genome equivalents. Proc. natn. Acad. Sci. U.S.A. 87, 4256–4260 (1990).

    Article  CAS  Google Scholar 

  20. Nelson, D.L. et al. Alu polymerase chain reaction: a method for rapid isolation of human–specific sequences from complex DNA sources. Proc. natn. Acad. Sci. U.S.A. 86, 6686–6690 (1989).

    Article  CAS  Google Scholar 

  21. Nelson, D.L. et al. Alu primed polymerase chain reaction for regional assignment of 110 yeast artificial chromosome clones from the human X chromosome: identification of clones associated with a disease locus. Proc. natn. Acad. Sci. U.S.A. 88, 6157–6161 (1991).

    Article  CAS  Google Scholar 

  22. Hattori, M., Hikada, S. & Sakaki, Y. Sequence analysis of a Kpnl fkmily member near the 3′ end of human β–globin gene. Nucl. Acids Res. 13, 7813–7827 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Foote, S., Vollrath, D., Hilton, A. & Page, D.C. The human Y chromosome: overlapping DNA clones spanning the euchromatic region. Science 258, 60–66 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Petit, C., Levilliers, J. & Weissenbach, J. Long–range restriction map 6f the terminal part of the short arm of the human X chromosome. Proc. natn. Acad. Sci. U.S.A. 87, 3680–3684 (1990).

    Article  CAS  Google Scholar 

  25. Lehrman, M.A., Goldstein, J.L., Russel, D.W. & Brown, S.M. Duplication of seven exons in LDL receptor gene caused by Alu–Alu recombination in a subject with familial hypercholesterolemia. Cell 48, 827–835 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. Myerowitz, R. & Hogikian, N.D. A deletion involving Alu sequences in the β–hexosaminidase α–chain gene of French Canadians with Tay–Sachs disease. J. biol. Chem. 262, 15396–15399 (1987).

    CAS  PubMed  Google Scholar 

  27. Neote, K., Mclnnes, B., Mahuran, D.J. & Gravel, R.A. Structurn and distribution of an Alu–type deletion mutation in Sandhoff disease. J. clin. Invest. 86, 1524–1531 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rubnitz, J. & Subramani, S. The minimum amount of homology required for homologous recombination in monkey cells. Molec. cell. Biol. 5, 529–537 (1984).

    Article  CAS  Google Scholar 

  29. Vnencak–Jones, C.L. & Phillips III, J.A. Hot–spots for growth hormone gene deletions in homologous regions outside of Alu repeats. Science 250, 1745–1748 (1990).

    Article  PubMed  Google Scholar 

  30. Yen, P.S. et al. X/Y translocations resulting from recombination between homologous sequences on Xp and Yq. Proc. natn. Acad. Sci. U.S.A. 88, 8944–8948 (1991).

    Article  CAS  Google Scholar 

  31. Guioli, S. et al. Kallmann syndrome due to a translocation resulting in an X/Y fusion gene. Nature Genet. 1, 337–340 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Bardoni, B. et al. A deletion map of the Yq11 region: Implication for the evolution of the Y chromosome and tentative mapping of a locus involved in spermatogenesis. Genomics 11, 443–451 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Rasmussen, S.W. & Holm, P.B. Human meiosis II. Chromosome pairing and recombination nodules in human spermatocytes. Carlsberg res. Commun. 43, 275–327 (1978).

    Article  Google Scholar 

  34. Yen, P.H. et al. The human X–linked steroid sulfatase gene and a Y–encoded pseudogene: evidence for an inversion of the Y chromosome during primate evolution. Cell 55, 1123–1135 (1988).

    Article  CAS  PubMed  Google Scholar 

  35. del Castillo, I., Cohen–Salmon, M., Blanchard, S., Lutfalla, G. & Petit, C. Structure of the gene responsible for the X–linked Kallmann syndrome and of its homologous pseudogene on the Y chromosome. Nature Genet. 2, 305–310 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Lambson, B., Affara, N.A., Mitchell, M. & Ferguson–Smith, M.A. Evolution of DNA sequence homologies between the sex chromosomes in primate species. Genomics 14, 1032–1040 (1992).

    Article  CAS  PubMed  Google Scholar 

  37. Ellis, N., Yen, P., Neiswanger, K., Shapiro, L.J. & Goodfellow, P.N. Evolution of the pseudoautosomal boundary in Old World monkeys and great apes. Cell 63, 977–986 (1990).

    Article  CAS  PubMed  Google Scholar 

  38. Pilbeam, D. The descent of hominoids and hominlds. Scientific Am. 250, 60–69 (1984).

    Article  Google Scholar 

  39. Li, W.H. & Graur, D. Rates and patterns of nucleotide substitution. In Fundamentals of Molecular evolution, (W.H. Li and Graur D. Sinauer Associates, Sunderiand, Massachusetts, U.S.A.) 67–73 (1991).

    Google Scholar 

  40. Warren, S.T. et al. Isolation of the human chromosomal band Xq28 within somatic hybrids by fragile X site breakage. Proc. natn. Acad. Sci. U.S.A. 87, 3856–3860 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weil, D., Wang, I., Dietrich, A. et al. Highly homologous loci on the X and Y chromosomes are hot–spots for ectopic recombinations leading to XX maleness. Nat Genet 7, 414–419 (1994). https://doi.org/10.1038/ng0794-414

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0794-414

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing