Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MASA syndrome is due to mutations in the neural cell adhesion gene L1CAM

Abstract

MASA syndrome is a recessive X–linked disorder characterized by mental retardation, adducted thumbs, shuffling gait, aphasia and, in some cases, hydrocephalus. Since it has been shown that X–linked hydrocephalus can be caused by mutations in L1CAM, a neuronal cell adhesion molecule, we performed an L1CAM mutation analysis in eight unrelated patients with MASA syndrome. Three different L1CAM mutations were identified: a deletion removing part of the open reading frame and two point mutations resulting in amino acid substitutions. L1CAM, therefore, harbours mutations leading to either MASA syndrome or HSAS, and might be frequently implicated in X–linked mental retardation with or without hydrocephalus.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bianchine, J.W., Lewis, R.C. The MASA syndrome: a new heritable mental retardation syndrome. Clin. Genet. 5, 298–306 (1974).

    Article  CAS  PubMed  Google Scholar 

  2. Gareis, F.J. & Mason, J.D. X-linked mental retardation associated with bilateral clasp thumb anomaly. Am. J. med. Genet. 17, 333–338 (1984).

    Article  CAS  PubMed  Google Scholar 

  3. Yeatman, G.W. Mental retardation-clasped thumb syndrome. Am. J. med. Genet 17, 339–344 (1984).

    Article  CAS  PubMed  Google Scholar 

  4. Kenwrick, S. et al. Linkage studies of X-linked recessive spastic paraplegia using DNA studies. Hum. Genet. 73, 264–266 (1986).

    Article  CAS  PubMed  Google Scholar 

  5. Winter, R.M., Davies, K.E., Bell, M.V., Huson, S.M. & Patterson, M.N. MASA syndrome: further clinical delineation and chromosomal localisation. Hum. Genet. 82, 367–370 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Schrander-Stumpel, C., Legius, E., Fryns, J.P. & Cassiman, J.J. MASA syndrome: new clinical features and linkage analysis using DNA probes. J. med. Genet. 27, 688–692 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fryns, J.P., Spaepen, A., Cassiman, J.-J. & Van den Berghe, H. X-linked complicated spastic paraplegia, MASA syndrome and X-linked hydrocephaly due to congenital stenosis of the aqueduct of Sylvius: a variable expression of the same mutation at Xq28. J. med. Genet. 28, 429–431 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rietschel, M. et al. MASA syndrome: clinical variability and linkage analysis. Am. J. med. Genet. 41, 10–14 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Straussberg, R. et al. X-linked mental retardation with bilateral clasped thumbs: report of another affected family. Clin. Genet. 40, 337–341 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Legius, E. et al. Fine mapping of X-linked clasped thumb and mental retardation (MASA syndrome) in Xq28. Am. J. med. Genet. 49 (Suppl), A1959 (1991).

    Google Scholar 

  11. Vles, J.S.H. et al. Corpus callosum agenesis, spastic quadriparesis and irregular lining of the lateral ventricles on CT-scan. A distinct X-linked mental retardation syndrome? Genet. Couns. 38, 97–102 (1990).

    Google Scholar 

  12. Macias, V.R., Day, D.W., King, T.E. & Wilson, G.N. Clasped-thumb mental retardation (MASA) syndrome: confirmation of linkage to Xq28. Am. J. med. Genet. 43, 408–414 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Boyd, E. et al. Agenesis of the corpus callosum associated with MASA syndrome. Clin. Dysmorphology. 2, 332–341 (1993).

    Article  CAS  Google Scholar 

  14. Bickers, D.S. & Adams, R.D. Hereditary stenosis of the aqueduct of Sylvius as a cause of congenital hydrocephalus. Brain 72, 246–262 (1949).

    Article  CAS  PubMed  Google Scholar 

  15. Edwards, J.H., Norman, R.M., Roberts, J.M. Sex-linked hydrocephalus: report of a family with 15 affected members. Arch. Dis. Child. 36, 481–485 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Willems, P.J., Brouwer, O.F., Dijkstra, I. & Wilmink, J. X-linked hydrocephalus. Am. J. med. Genet. 27, 921–928 (1987).

    Article  CAS  PubMed  Google Scholar 

  17. Serville, F. et al. X-linked hydrocephalus: clinical heterogeneity at a single gene locus. Eur. J. Pediatr. 151, 515–518 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Willems, P.J. et al. Assignment of X-linked hydrocephalus to Xq28 by linkage analysis. Genomics 8, 367–370 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Willems, P.J. et al. Further localization of X-linked hydrocephalus in the chromosomal region Xq28. Am. J. hum. Genet. 51, 307–315 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lyonnet, S. et al. The gene for X-linked hydrocephalus maps to Xq28, distal to DXS52. Genomics 14, 508–510 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Maestrini, E. et al. An archipelago of CpG islands in Xq28: identification and fine mapping of 20 new CpG islands of the human X chromosome. Hum. molec. Genet. 1, 275–280 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Kom, B. et al. A strategy for the selection of transcribed sequences in the Xq28 region. Hum. molec. Genet. 1, 235–242 (1992).

    Article  Google Scholar 

  23. Rosenthal, A., Jouet, M. & Kenwrick, S. Aberrant splicing of neural cell adhesion molecule L1 mRNA in a family with X-linked hydrocephalus. Nature Genet. 2, 107–112 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Van Camp, G. et al. Duplication In the L1CAM gene associated with X-linked hydrocephalus. Nature Genet. 4, 421–425 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Jouet, M., Rosenthal, A., MacFariane, J., Kenwrick, S. & Donnai, D. A missense mutation confirms the L1 defect in X-linked hydrocephalus. Nat. Genet. 4, 331 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Coucke, P. et al. Identification of a 5′splice site mutation in intron 4 of the L1CAM gene in an X-linked hydrocephalus family. Hum. molec. Genet. 3, 671–673 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Hlavin, M.L. & Lemmon, V. Molecular structure and functional testing of human L1. Genomics 11, 416–423 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Lemmon, V., Farr, K.L. & Lagenaur, C. L1-mediated axon outgrowth occurs via a homophilic binding mechanism. Neuron 2, 1597–1603 (1989).

    Article  CAS  PubMed  Google Scholar 

  29. Miura, M., Asou, H., Kobayashi, M. & Uyemura, K. Functional expression of a full-length cDNA coding for rat neural cell adhesion molecule L1 mediates homophilic intercellular adhesion and migration of cerebellar neurons. J. biol. Chem. 267, 10752–10758 (1992).

    CAS  PubMed  Google Scholar 

  30. Williams, E.J. et al. Calcium Influx into neurons can solely account for cell contact-dependent neurite outgrowth stimulated by transfected L1. J. cell Biol. 119, 883–892 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Sonderegger, P. & Ratnjen, F.G. Regulatlon of axonal growth in the vertebrate nervous system by interactions between glycoproteins belonging to two subgroups of the immunoglobulin superfamily. J. cell Biol. 119, 1387–1394 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Atashi, J.R. et al. Neural cell adhesion molecules modulate tyrosine phosphorylation of tubulin in nerve growth cone membranes. Neuron 8, 831–842 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Schuch, U., Lohse, M.J. & Schachner, M. Neural Cell adhesion molecules influence second messenger systems. Neuron 3 (1989).

    Article  CAS  PubMed  Google Scholar 

  34. Moos, M. et al. Neural adhesion molecule L1 as a member of the immunoglobulin superfamlly with binding domains similar to fibronectin. Nature 334, 701–703 (1988).

    Article  CAS  PubMed  Google Scholar 

  35. Prince, J.T., Alberti, L., Healy, P.A., Nauman, S.J. & Stallcup, W.B. Molecular cloning of NILE glycoprotein and evidence for its continued expression in mature rat CNS. J. Neurosc. Res. 30, 567–581 (1991).

    Article  CAS  Google Scholar 

  36. Burgoon, M.P., Grumet, M., Mauro, V., Edelman, G.M. & Cunningham, B.A. Structure of the chicken neuronglia cell adhesion molecule, Ng-CAM: origin of the polypeptides and relation to the Ig superfamily. J. Cell Biol. 112, 1017–1029 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Bieber, A.J. et al. Drosophila neuroglian: a member of the immunoglobulin superfamily with extensive homology to the vertebrate neural adhesion molecule L1. Cell 59, 447–460 (1989).

    Article  CAS  PubMed  Google Scholar 

  38. Chance, P.F. et al. DNA deletion associated with hereditary neuropathy with liability to pressure palsies. Cell 72, 143–151 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Dean, M. & Gerrard, B. Helpful hints for the detection of single-stranded conformation polymorphism. Bio Tech. 10, 331–332 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vits, L., Van Camp, G., Coucke, P. et al. MASA syndrome is due to mutations in the neural cell adhesion gene L1CAM. Nat Genet 7, 408–413 (1994). https://doi.org/10.1038/ng0794-408

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0794-408

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing