Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Heterozygous missense mutation in the rhodopsin gene as a cause of congenital stationary night blindness

Abstract

A number of mutations in the rhodopsin gene have been shown to cause both dominant and recessive retinitis pigmentosa. Here we describe another phenotype associated with a defect in this gene. We discovered a patient with congenital stationary night blindness who carries the missense mutation Ala292Glu. When coupled with 11–cis–retinal in vitro, Ala292Glu rhodopsin is able to activate transducin in a light–dependent manner like wild–type rhodopsin. However, without a chromophore, Ala292Glu opsin anomalously activates transducin. We speculate that the rod dysfunction in this patient is due to an abnormal, continuous activation of transducin by mutant opsin molecules in photoreceptor outer segments.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schubert, G. & Bornschein, H. Beitrag zur Analyse des menschlichen Elektroretinogramms. Ophthalmologica 123, 396–413 (1952).

    Article  CAS  Google Scholar 

  2. Goodman, G. & Bornschein, H. Comparative electroretinographic studies in congenital night blindness and total color blindness. Arch. Ophthalmol. 58, 174–182 (1957).

    Article  CAS  Google Scholar 

  3. Hill, D.A., Arbel, K.F. & Berson, E.L. Cone electroretinograms in congenital nyctalopia with myopia. Am. J. Ophthalmol. 78, 127–136 (1974).

    Article  CAS  Google Scholar 

  4. Carr, R.E., Ripps, H., Siegel, I.M. & Weale, R.A. Rhodopsin and the electrical activity of the retina in congenital night blindness. Invest. Ophthal. Vis. Sci. 5, 497–507 (1966).

    CAS  Google Scholar 

  5. Peachey, N.S. et al. A form of congenital stationary night blindness with apparent defect of rod phototransduction. Invest. Ophthal. Vis. Sci. 31, 237–246 (1990).

    CAS  PubMed  Google Scholar 

  6. Franceschetti, A., Francois, J. & Babel, J. Chorioretinal Heredodegenerations (Charles C. Thomas, Springfield, Illinois, 1963).

    Google Scholar 

  7. Nettleship, E. A history of congenital stationary night-blindness in nine consecutive generations. Trans. Ophthalmol. Soc. UK 27, 269–293 (1907).

    Google Scholar 

  8. Dejean, C. & Gassenc, R. Note sur la genealogie de la famille Nougaret, de Vendemian. Bull. Soc. Ophtal. France 1, 96–99 (1949).

    Google Scholar 

  9. Berson, E.L. in Adler's Physiology of the Eye 9th edn (ed. Hart, W.M.) 641–707 (C.V. Mosby, St. Louis, 1992).

    Google Scholar 

  10. Berson, E.L. Retinitis pigmentosa and allied retinal diseases: electrophysiologic findings. Trans. Am. Acad. Ophthalmol. Otolaryngol. 81, 659–666 (1976).

    Google Scholar 

  11. Oprian, D.D., Molday, R.S., Kaufman, R.S. & Khorana, H.G. Expression of a synthetic rhodopsin gene in monkey kidney cells. Proc. natn. Acad. Sci. U.S.A. 84, 8874–8878 (1987).

    Article  CAS  Google Scholar 

  12. Zhukovsky, E.A., Robinson, P.R. & Oprian, D.D. Transducin activation by rhodopsin without a covalent bond to the 11-cis-retinal chromophore. Science 251, 558–560 (1991).

    Article  CAS  Google Scholar 

  13. Nakayama, T.A. & Khorana, H.G. Mapping of the amino acids in membrane-embedded helices that interact with the retinal chromophore in bovine rhodopsin. J. biol. Chem. 266, 4269–4275 (1991).

    CAS  PubMed  Google Scholar 

  14. Defoe, D.M. & Bok, D. Rhodopsin chromophore exchanges among opsin molecules in the dark. Invest. Ophthal. Vis. Sci. 24, 1211–1226 (1983).

    CAS  PubMed  Google Scholar 

  15. Van Kuijk, F.J.G.M. et al. Spectrophotometric quantitation of rhodopsin in human retina. Invest. Ophthal. Vis. Sci. 32, 1962–1967 (1991).

    CAS  PubMed  Google Scholar 

  16. Curcio, C.A., Sloan, K.R., Kalina, R.E. & Hendrickson, A.E. Human photoreceptor topography. J. comp. Neurol. 292, 497–523 (1990).

    Article  CAS  Google Scholar 

  17. Fulton, A.B. et al. The quantity of rhodopsin in human eyes. Curr. Eye Res. 9, 1211–1216 (1990).

    Article  CAS  Google Scholar 

  18. Baylor, D.A., Nunn, B.J. & Schnapf, J.L. The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. J. Physiol. 357, 575–607 (1984).

    Article  CAS  Google Scholar 

  19. Sandberg, M.A., Berson, E.L. & Effron, M.H. Rod-cone interaction in the distal human retina. Science 212, 829–831 (1981).

    Article  CAS  Google Scholar 

  20. Birch, D.G. & Sandberg, M.A. Dependence of cone b-wave implicit time on rod amplitude in retinitis pigmentosa. Vision Res. 27, 1105–1112 (1987).

    Article  CAS  Google Scholar 

  21. Robinson, P.R., Cohen, G.B., Zhukovsky, E.A. & Oprian, D.D. Constitutively active mutants of rhodopsin. Neuron 9, 719–725 (1992).

    Article  CAS  Google Scholar 

  22. Inglehearn, C.F. et al. A completed screen for mutations of the rhodopsin gene in a panel of patients with autosomal dominant retinitis pigmentosa. Hum. molec. Genet. 1, 41–45 (1992).

    Article  CAS  Google Scholar 

  23. Nathans, J. & Hogness, D.S. Isolation and nucleotide sequence of the gene encoding human rhodopsin. Proc. natn. Acad. Sci. U.S.A. 81, 4851–4855 (1984).

    Article  CAS  Google Scholar 

  24. Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K. & Sekiya, T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. natn. Acad. Sci. U.S.A. 86, 2766–2770 (1989).

    Article  CAS  Google Scholar 

  25. Dryja, T.P., Hahn, L.B., Cowley, G.S., McGee, T.L. & Berson, E.L. Mutation spectrum of the rhodopsin gene among patients with autosomal dominant retinitis pigmentosa. Proc. natn. Acad. Sci. U.S.A. 88, 9370–9374 (1991).

    Article  CAS  Google Scholar 

  26. Yandell, D.W. & Dryja, T.P. in Cold Spring Harbor Symposium Series: Cancer Cells 7 - Molecular Diagnostics of Human Cancer (eds Furth, M. & Greaves, M.) 223–227 (Cold Spring Harbor Press, New York, 1989).

    Google Scholar 

  27. Berson, E.L., Gouras, P. & Gunkel, R.D. Rod responses in retinitis pigmentosa, dominantly inherited. Arch. Ophthalmol. 80, 58–67 (1968).

    Article  CAS  Google Scholar 

  28. Reichel, E., Bruce, A.M., Sandberg, M.A. & Berson, E.L. An electroretinographic and molecular genetic study of X-linked cone degeneration. Am. J. Ophthalmol. 108, 540–547 (1989).

    Article  CAS  Google Scholar 

  29. Ferretti, L., Karnik, S.S., Khorana, H.G., Nassal, M. & Oprian, D.D. Total synthesis of a gene for bovine rhodopsin. Proc. natn. Acad. Sci. U.S.A. 83, 599–603 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dryja, T., Berson, E., Rao, V. et al. Heterozygous missense mutation in the rhodopsin gene as a cause of congenital stationary night blindness. Nat Genet 4, 280–283 (1993). https://doi.org/10.1038/ng0793-280

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0793-280

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing