Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

The impact of L1 retrotransposons on the human genome

Abstract

The ‘master’ human mobile element, the L1 retrotransposon, has come of age as a biological entity. Knowledge of how it retrotransposes in vivo, how its proteins act to retrotranspose other poly A elements and the extent of its role in shaping the human genome should emerge rapidly over the next few years. We review the impact of retrotransposons and how new insight is likely to lead to important practical applications for these intriguing mobile elements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Smit, A.F., Toth, G., Riggs, A.D. & Jurka, J., Ancestral, mammalian-wide subfamilies of LINE-1 repetitive sequences. J. Mol. Biol. 246, 401–417 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Smit, A.F. The origin of interspersed repeats in the human genome. Curr. Opin. Genet Dev. 6, 743–748 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Temin, H.M. Reverse transcription in the eukaryotic genome: retroviruses, pararetroviruses, retrotransposons, and retrotranscripts. Mol. Biol. Evol. 2, 455–468 (1985).

    CAS  PubMed  Google Scholar 

  4. Rice, P., Craigie, R. & Davies, D.R. Retroviral integrases and their cousins. Curr. Opin. Struct. Biol. 6, 76–83 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Plasterk, R.H., Tc1/mariner transposon family. Curr. Top. Microbiol. Immunol. 204, 125–143 (1996).

    CAS  PubMed  Google Scholar 

  6. Ivies, Z., Hackett, P.B., Plasterk, R.H. & Izsvák, Z., Reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91, 501–510 (1997).

    Article  Google Scholar 

  7. Lower, R., Lower, J. & Kurth, R. The viruses in all of us: characteristics and biological significance of human endogenous retrovirus sequences. Proc. Natl. Acad. Sci. USA 93, 5177–5184 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Korenberg, J.R. & Rykowski, M.C. Human genome organization: Alu, lines, and the molecular structure of metaphase chromosome bands. Cell 53, 391–400 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. Fanning, T.G. & Singer, M.F. LINE-1: a mammalian transposable element. Biochim. Biophys. Acta 910, 203–212 (1987).

    Article  CAS  PubMed  Google Scholar 

  10. Kazazian, H.H., Jr. et al. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332, 164–166 (1988).

    Article  CAS  PubMed  Google Scholar 

  11. Woods-Samuels, P. et al. Characterization of a nondeleterious L1 insertion in an intron of the human factor VIII gene and further evidence of open reading frames in functional L1 elements. Genomics 4, 290–296 (1989).

    Article  CAS  PubMed  Google Scholar 

  12. Holmes, S.E., Dombrowski, B.A., Krebs, C.M., Boehm, C.D. & Kazazian, H.H., Jr. A new retrotransposable human L1 element from the LRE2 locus on chromosome 1q produces a chimaeric insertion. Nature Genet. 7, 143–148 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Narita, N. et al. Insertion of a 5′ truncated L1 element into the 3′ end of exon 44 of the dystrophin gene resulted in skipping of the exon during splicing in a case of Duchenne muscular dystrophy. J. Clin. Invest. 91, 1862–1867 (993).

    Article  Google Scholar 

  14. Miki, Y. et al. Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. Cancer Res. 52, 643–645 (1992).

    CAS  PubMed  Google Scholar 

  15. Skowronski, J., Fanning, T.G. & Singer, M.F., Line-1 transcripts in human teratocarcinoma cells. Mol. Cell. Biol. 8, 1385–1397 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vidaud, D. et al. Haemophilia B due to a de novo insertion of a human-specific Alu subfamily member within the coding region of the factor IX gene. Eur. J. Hum. Genet. 1, 30–36 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Wallace, M.R. et al. A de novo Alu insertion results in neurofibromatosis type 1. Nature 353, 864–866 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Miki, Y., Katagiri, T., Kasumi, F., Yoshimoto, T. & Nakamura, Y. Mutation analysis in the BRCA2 gene in primary breast cancers. Nature Genet. 13, 245–247 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Kingsmore, S.F. et al. Glycine receptor beta-subunit gene mutation in spastic mouse associated with LINE-1 element insertion. Nature Genet. 7, 136–141 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Mulhardt, C. et al. The spastic mouse: aberrant splicing of glycine receptor beta subunit mRNA caused by intronic insertion of L1 element. Neuron 13, 1003–1015 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Takahara, T. et al. Dysfunction of the Orleans reeler gene arising from exon skipping due to transposition of a full-length copy of an active L1 sequence into the skipped exon. Hum. Mol. Genet. 5, 989–993 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Kohrman, D.C., Harris, J.B. & Meisler, M.H. Mutation detection in the med and medJ alleles of the sodium channel Scn8a. Unusual splicing due to a minor class AT-AC intron. J. Biol. Chem. 271, 17576–17581 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Perou, C.M., Pryor, R.J., Naas, T.P. & Kaplan, J. The bg allele mutation is due to a LINE1 element retrotransposition. Genomics 42, 366–368 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Kuff, E.L. & Lueders, K.K. The intracisternal A-particle gene family: structure and functional aspects. Adv. Cancer Res. 51, 183–276 (1988).

    Article  CAS  PubMed  Google Scholar 

  25. Duhl, D.M., Vrieling, H., Miller, K.A., Wolff, G.L. & Barsh, G.S. Neomorphic agouti mutations in obese yellow mice. Nature Genet. 8, 59–65 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Michaud, E.J. et al. Differential expression of a new dominant agouti allele (Aiapy) is correlated with methylation state and is influenced by parental lineage. Genes Dev. 8, 1463–1472 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Argeson, A.C., Nelson, K.K. & Siracusa, L.D. Molecular basis of the pleiotropic phenotype of mice carrying the hypervariable yellow (Ahvy) mutation at the agouti locus. Genetics 142, 557–567 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Gardner, J.M. et al. The mouse pale ear (ep) mutation is the homologue of human Hermansky-Pudlak syndrome. Proc. Natl. Acad. Sci. USA 94, 9238–9243 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hamilton, B.A. et al. The vibrator mutation causes neurodegeneration via reduced expression of PITP alpha: positional complementation cloning and extragenic suppression. Neuron 18, 711–722 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Kuster, J.E., Guarnieri, M.H., Ault, J.G., Flaherty, L. & Swiatek, P.J. IAP insertion in the murine LamB3 gene results in junctional epidermolysis bullosa. Mamm. Genome 8, 673–681 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Herrmann, B.C., Labeit, S., Poustka, A., King, T.R. & Lehrach, H. Cloning of the T gene required in mesoderm formation in the mouse. Nature 343, 617–622 (1990).

    Article  CAS  PubMed  Google Scholar 

  32. Steinmeyer, K. et al. Inactivation of muscle chloride channel by transposon insertion in myotonic mice. Nature 354, 304–308 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Adachi, M., Watanabe-Fukunaga, R. & Nagata, S. Aberrant transcription caused by the insertion of an early transposable element in an intron of the Fas antigen gene of Ipr mice. Proc. Natl. Acad. Sci. USA 90, 1756–1760 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moon, B.C. & Friedman, J.M. The molecular basis of the obese mutation in ob2J mice. Genomics 42, 152–156 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Shiels, A. & Bassnett, S. Mutations in the founder of the MIP gene family underlie cataract development in the mouse. Nature Genet. 12, 212–215 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Loftus, S.K. et al. Murine model of Niemann-Pick C disease: mutation in a cholesterol homeostasis gene. Science 277, 232–235 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Dombroski, B.A., Mathias, S.L., Nanthakumar, E., Scott, A.F. & Kazazian, H. Jr., Isolation of an active human transposable element. Science 254, 1805–1808 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Moran, J.V. et al. High frequency retrotransposition in cultured mammalian cells. Cell 87, 917–927 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Sassaman, D.M. et al. Many human L1 elements are capable of retrotransposition. Nature Genet. 16, 37–43 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Naas, T.P. et al. An actively retrotransposing, novel subfamily of mouse L1 elements. EMBO J. 17, 590–597 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mathias, S.L., Scott, A.F., Kazazian, H.H., Jr., Boeke, J.D. & Gabriel, A. Reverse transcriptase encoded by a human transposable element. Science 254, 1808–1810 (1991).

    Article  CAS  PubMed  Google Scholar 

  42. Luan, D.D., Korman, M.H., Jakubczak, J.L. & Eickbush, T.H. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72, 595–605 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Swergold, G.D., Identification, characterization, and cell specificity of a human LINE-1 promoter. Mol. Cell. Biol. 10, 6718–6729 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Branciforte, D. & Martin, S.L. Developmental and cell type specificity of LINE-1 expression in mouse testis: implications for transposition. Mol. Cell. Biol. 14, 2584–2592 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bratthauer, G.L. & Fanning, T.G. Active LINE-1 retrotransposons in human testicular cancer. Oncogene 7, 507–510 (1992).

    CAS  PubMed  Google Scholar 

  46. Yoder, J.A., Walsh, C.P. & Bestor, T.H. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13, 335–340 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Kurose, K., Hata, K., Hattori, M. & Sakaki, Y. RNA polymerase III dependence of the human L1 promoter and possible participation of the RNA polymerase II factor YY1 in the RNA polymerase III transcription system. Nucleic Acids Res. 23, 3704–3709 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Becker, K.G., Swergold, G.D., Ozato, K. & Thayer, R.E. Binding of the ubiquitous nuclear transcription factor YY1 to a cis regulatory sequence in the human LINE-1 transposable element. Hum. Mol. Genet. 2, 1697–1702 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. Leibold, D.M. et al. Translation of LINE-1 DNA elements in vitro and in human cells. Proc. Natl. Acad. Sci. USA 87, 6990–6994 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hohjoh, H. & Singer, M.F. Cytoplasmic ribonucleoprotein complexes containing human LINE-1 protein and RNA. EMBO J. 15, 630–639 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hohjoh, H. & Singer, M.F. Sequence-specific single-strand RNA binding protein encoded by the human LINE-1 retrotransposon. EMBO J. 16, 6034–6043 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Martin, S.L. Ribonucleoprotein particles with LINE-1 RNA in mouse embryonal carcinoma cells. Mol. Cell. Biol. 11, 4804–4807 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Martin, S.L. Characterization of a LINE-1 cDNA that originated from RNA present in ribonucleoprotein particles: implications for the structure of an active mouse LINE-1. Gene 153, 261–266 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. McMillan, J.P. & Singer, M.F. Translation of the human LINE-1 element, L1Hs. Proc. Natl. Acad. Sci. USA 90, 11533–11537 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Feng, Q., Moran, J.V., Kazazian, H.H. & Boeke, J.D. Human L1 retrotransposon encodes a conserved endonuclease required fo retrotransposition. Cell 87, 905–916 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Mol, C.D., Kuo, C.F., Thayer, M.M., Cunningham, R.P. & Tainer, J.A. Structure and function of the multifunctional DNA-repair enzyme exonuclease III. Nature 374, 381–386 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Gorman, M.A. et al. The crystal structure of the human DNA repair endonuclease HAP1 suggests the recognition of extra-helical deoxyribose at DNA abasic sites. EMBO J. 16, 6548–6558 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xiong, Y. & Eickbush, T.H. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 9, 3353–3362 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nakamura, T.M. et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 277, 955–959 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Eickbush, T.H. Telomerase and retrotransposons: which came first? Science 277, 911–912 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Dhellin, O., Maestre, J. & Heidmann, T. Functional difference between the human LINE retrotransposon and retroviral reverse transcriptases for in vivo mRNA reverse transcriptase. EMBO J. 16, 6590–6602 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Boeke, J.D. LINEs and Alus—the polyA connection. Nature Genet. 16, 6–7 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Chang, D.Y. & Maraia, R.J. A cellular protein binds 81 and Alu small cytoplasmic RNAs in vitro. J. Biol. Chem. 268, 6423–6428 (1993).

    CAS  PubMed  Google Scholar 

  64. Chang, D.Y. et al. A human Alu RNA-binding protein whose expression is associated with accumulation of small cytoplasmic Alu RNA. Mol. Cell. Biol. 14, 3949–3959 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chang, D.Y., Sasaki-Tozawa, N., Green, L.K. & Maraia, R.J. Atrinucleotide repeat-associated increase in the level of Alu RNA-binding protein occurred during the same period as the major Alu amplification that accompanied anthropoid evolution. Mol. Cell. Biol. 15, 2109–2116 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jurka, J. Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc. Natl. Acad. Sci. U.S.A. 94, 1872–1877 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shaikh, T.H., Roy, A.M., Kirn, J., Batzer, M.A. & Deininger, P.L. cDNAs derived from primary and small cytoplasmic Alu (scAlu) transcripts. J. Mol. Biol. 271, 222–234 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Luan, D.D. & Eickbush, T.H. RNA template requirements for target DNA-primed reverse transcription by the R2 retrotransposable element. Mol. Cell. Biol. 15, 3882–3891 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haig H. Kazazian Jr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazazian, H., Moran, J. The impact of L1 retrotransposons on the human genome. Nat Genet 19, 19–24 (1998). https://doi.org/10.1038/ng0598-19

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0598-19

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing