Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Many human L1 elements are capable of retrotransposition

Abstract

Using a selective screening strategy to enrich for active L1 elements, we isolated 13 full-length elements from a human genomic library. We tested these and two previously-isolated L1s (L1.3 and L1.4) for reverse transcriptase (RT) activity and the ability to retrotranspose in HeLa cells. Of the 13 newly-isolated Us, eight had RT activity and three were able to retrotranspose. L1.3 and L1.4 possessed RT activity and retrotransposed at remarkably high frequencies. These studies bring the number of characterized active human L1 elements to seven. Based on these and other data, we estimate that 30–60 active L1 elements reside in the average diploid genome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Burton, F.H. et al. Conservation throughout mammalia and extensive protein-encoding capacity of the highly repeated DNA long interspersed sequence one. J. Mol. Biol. 187, 291–304 (1986).

    Article  CAS  PubMed  Google Scholar 

  2. Hwu, H.R., Roberts, J.W., Davidson, E.H. & Britten, R.J. Insertion and/or deletion of many repeated DNA sequences in human and higher ape evolution. Proc. Natl. Acad. Sci USA 83, 3875–3879 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hutchison, C.A., Hardies, S.C., Loeb, D.D., Shehee, W.R. & Edgell, M.H. LINES and related retroposons: long interspersed sequences in the eucaryotic genome in Mobile DNA (eds Berg, D.E. & Howe, M.M.) 593–617 (ASM Press, Washington, DC, 1989).

    Google Scholar 

  4. Swergold, G.D., Identification, characterization, and cell specificity of a human LINE-1 promoter. Mol. Cell. Biol. 10, 6718–6729 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Minakami, R. et al. Identification of an internal cis-element essential for the human L1 transcription and a nuclear factor(s) binding to the element. Nucl. Acids Res. 20, 3139–3145 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Scott, A.F. et al. Origin of the human L1 elements: proposed progenitor genes deduced from a consensus DNA sequence. Genomics 1, 113–125 (1987).

    Article  CAS  PubMed  Google Scholar 

  7. Holmes, S.E., Singer, M.F. & Swergold, G.D. Studies on p40, the leucine zipper motif-containing protein encoded by the first open reading frame of an active human LINE-1 transposable element. J. Biol. Chem. 267, 19765–19768 (1992).

    CAS  PubMed  Google Scholar 

  8. Hohjoh, H. & Singer, M.F. Cytoplasmic ribonucleoprotein complexes containing human LINE-1 protein and RNA. EMBO J. 15, 630–639 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Feng, Q., Moran, J.V., Kazazian, H.H., Jr., & Boeke, J.D. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87, 905–916 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Mathias, S.L., Scott, A.F., Kazazian, H.H., Jr., Boeke, J.D. & Gabriel, A. Reverse transcriptase encoded by a human transposable element. Science 254, 1808–1810 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Adams, J.W., Kaufman, R.E., Kretschmer, P.J., Harrison, M. & Nienhuis, A.W. A family of long reiterated DNA sequences, one copy of which is next to the human beta globin gene. Nucl. Acids Res. 8, 6113–6128 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grimaldi, G., Skowronski, J. & Singer, M.F. Defining the beginning and end of Kpnl family segments. EMBO J. 3, 1753–1759 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kazazian, H.H., Jr., et al. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332, 164–166 (1988).

    Article  CAS  PubMed  Google Scholar 

  14. Narita, N. et al. Insertion of a 5′ truncated L1 element into the 3′ end of exon 44 of the dystrophin gene resulted in skipping of the exon during splicing in a case of Duchenne muscular dystrophy. J. Clin. Invest. 91, 1862–1867 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Holmes, S.E., Dombrowski, B.A., Krebs, C.M., Boehm, C.D. & Kazazian, H.H., Jr. A new retrotransposable human L1 element from the LRE2 locus on chromosome 1q produces a chimaeric insertion. Nature Genet. 7, 143–148 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Morse, B., Rotherg, P.G., South, V.J., Spandorfer, J.M. & Astrin, S.M. Insertional mutagenesis of the myc locus by a LINE-1 sequence in a human breast carcinoma. Nature 333, 87–90 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. Miki, Y. et al. Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. Cancer Res. 52, 643–645 (1992).

    CAS  PubMed  Google Scholar 

  18. Skowronski, J., Fanning, T.G. & Singer, M.F. Unit-length line-1 transcripts in human teratocarcinoma cells. Mol. Cell. Biol. 8, 1385–1397 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dombroski, B.A., Mathias, S.L., Nanthakumar, E., Scott, A.F. & Kazazian, H.H., Jr., Isolation of an active human transposable element. Science 254, 1805–1808 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Dombroski, B.A., Scott, A.F. & Kazazian, H.H., Jr. Two additional potential retrotransposons isolated from a human L1 subfamily that contains an active retrotransposable element. Proc. Natl. Acad. Sci. USA 90, 6513–6517 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dombroski, B.A. et al. An in vivo assay for the reverse transcriptase of human retrotransposon L1 in Saccharomyces cerevisiae. Mol. Cell. Biol. 14, 4485–4492 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moran, J.V. et al. High frequency retrotransposition in cultured mammalian cells. Cell 87, 917–927 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Sassaman, D.M. Characterization of Five Novel Human L1 Elements Capable of Retrotransposition (Doctoral Dissertation, Johns Hopkins University, Baltimore, MD. 1996).

  24. Smit, A.F.A., Toth, G., Riggs, A.D. & Jurka, J., Ancestral, mammalian-wide sufbamilies of LINE-1 repetitive sequences. J. Mol. Biol. 246, 401–417 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Fanning, T.G. & Singer, M.F. LINE-1: a mammalian transposable element. Biochim. Biophys. Acta 910, 203–212 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. Boeke, J.D., Garfinkel, D.J., Styles, C.A. & Fink, G.R. Ty elements transpose through an RNA intermediate. Cell 40, 491–500 (1985).

    Article  CAS  PubMed  Google Scholar 

  27. Braiterman, L.T. et al. In-frame linker insertion mutagenesis of yeast transposon Ty1: phenotypic analysis. Gene 139, 19–26 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Derr, L.K., Strathern, J.N. & Garfinkel, D.J. RNA-mediated recombination in S. cerevisiae. Cell 67, 355–364 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Teng, S.-C., Kim, B. & Gabriel, A. Retrotransposon reverse-transcriptase-mediated repair of chromosomal breaks. Nature 383, 641–644 (1996).

    Article  PubMed  Google Scholar 

  30. Temin, H.M. Reverse transcription in the eukaryotic genome: retroviruses, pararetroviruses, retrotransposons and retrotranscripts. Mol. Biol. Evol. 2, 455–468 (1985).

    CAS  PubMed  Google Scholar 

  31. Weiner, A.M., Deininger, P.L. & Efstratiadis, A. Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu. Rev. Biochem. 55, 631–661 (1986).

    Article  CAS  PubMed  Google Scholar 

  32. Rose, M.D., Winston, F. & Hieter, P. Methods in Yeast Genetics: a Laboratory Course Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1990).

  33. Sambrook, J., Fritsch, E.F. & Maniatis, T., Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989).

  34. Kunkel, T.A., Bebenek, K. & McClary, J. Efficient site-directed mutagenesis using uracil-containing DNA. Methods in Enzymol. 204, 125–139 (1991).

    Article  CAS  Google Scholar 

  35. Muhlrad, D., Hunter, R. & Parker, R. A rapid method for localized mutagenesis of yeast genes. Yeast 8, 79–82 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Goff, S., Traktman, P. & Baltimore, D. Isolation and properties of Moloney leukemia virus: use of a rapid assay for release of virion reverse transctriptase. J. Virol. 38, 239–248 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  38. Garfinkel, D.J., Boeke, J.D. & Fink, G.R. Ty element transposition: reverse transcriptase and virus-like particles. Cell 42, 507–517 (1985).

    Article  CAS  PubMed  Google Scholar 

  39. Freeman, J.D., Goodchild, N.L. & Mager, D.L. A modified indicator gene for selection of retrotransposition events in mammalian cells. BioTechniques 17, 47–52 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haig H. Kazazian Jr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sassaman, D., Dombroski, B., Moran, J. et al. Many human L1 elements are capable of retrotransposition. Nat Genet 16, 37–43 (1997). https://doi.org/10.1038/ng0597-37

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0597-37

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing